

REPUBLIC OF SERBIA INFORMATIVE INVENTORY REPORT TO LRTAP CONVENTION FOR 2024

TABLE OF CONTENT

EXECUTIVE SUMMARY	1
1. INTRODUCTION	1
1.1 NATIONAL INVENTORY BACKGROUND	2
1.2 INSTITUTIONAL ARRANGEMENTS	3
1.3 INVENTORY PREPARATION PROCESS	3
1.4 METHODS AND DATA SOURCES	4
1.5 KEY CATEGORIES	6
1.6 QA/QC AND VERIFICATION METHODS	9
1.7. GENERAL UNCERTAINTY EVALUATION	12
1.8 GENERAL ASSESSMENT OF COMPLETENESS	12
2. EXPLANATION OF KEY TRENDS	17
2.1. THE METHODOLOGY FOR KEY SOURCE ANALYSIS	17
2.2. KEY SOURCE ANALYSIS	17
2.3. RESULTS OF THE LEVEL AND TREND ASSESSMENT (APPROACH 1)	23
2.4. TREND IN TOTAL EMISSIONS	43
3. ENERGY (NFR 1)	106
-1 A Fuel Combustion Activities	107
-1.B Fugitive emissions	125
4.INDUSTRIAL PROCESSES AND PRODUCTS USE (NFR 2)	129
-2.A Mineral industry	130
-2.B Chemical industry	133
-2.C Metal industry	140
-2.D Other industry	145
5.AGRICULTURE (NFR 3)	154
-3.B Animal Husbandry and Manure Management	155
-3.D.a.1. Agricultural Soils	156
-3.D e. Cultivated crops	156
-3.F Field burning of agricultural wastes	157
6.WASTE (NFR 5)	16 1
-5.A Solid Waste Disposal on Land	161
-5.C.1. Cremation	162
-5.D.1. Domestic wastewater handling	163

Republic of Serbia Informative inventory report to LRTAP convention for 2024

-5.D.2. Industrial wastewater handling	163
-5.C Waste incineration	164
7. OTHER AND NATURAL EMISSIONS (NFR 11)	164
-11.A. Natural sources	164
-11.B Forest fires	164
8. RECALCULATION AND IMPROVEMENTS	171
9. PROJECTIONS	171
10. REPORTING OF GRIDDES EMISSIONS AND LPS	172
11. EMISSION TRENDS PER SECTOR	172

EXECUTIVE SUMMARY

Serbian Informative Inventory Report (IIR) and the complete set of NFR tables represent Serbian official submission under the United Nations Economic Commision for Europe (UNECE) Convention on Long range Transboundary Air Pollution (LRTAP). Starting from the first submission, Serbia reports all pollutants in prescribed reporting format from 1990 as a base year to the latest inventory year. Serbia is required to annually report data on emissions of air pollutants covered in the Convention and its Protocols:

Main pollutants: nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC), Sulphur oxides (SOx), ammonia (NH3) and carbon monoxide (CO);

Particulate matter (PM): primary PM (fine particulate matter (PM2,5) and coarse particulate matter (PM10) as well as total suspended particulates (TSPs);

Priority heavy metals (HMs); Lead (Pb), Cadmium (Cd) and mercury (Hg);

Persistent organic pollutants (POPs): Polychlorinated dibenzodioxins/dibenzofurans (PCDD/Fs),

Polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs).

1. INTRODUCTION

The Republic of Serbia became a party to the Convention on Long-range Transboundary Air Pollution (CLRTAP) and to the Protocol on Long-term Financing of the Cooperative Programme for Monitoring and evaluation of the Long-range Transmission of Air Pollutants in Europe on 8 October 1991.

The Republic of Serbia has also ratified following protocols under the LRTAP Convention: Protocol on Long-term Financing of the Cooperative Programme for Monitoring and evaluation of the Longrange Transmission of Air Pollutants in Europe (EMEP), Protocol on Heavy Metals, and Protocol on Persistent Organic Pollutants. Table 1.1 shows the status of ratification of international treaties under the CLRTAP and status of ratification in Serbia.

Table 1. Status of ratification of international treaties under the CLRTAP

Treaty	Signed by the Parties	In force since	Ratified by Serbia
Convention on Long-range Transboundary Air Pollution (CLRTAP)	1979	1983	1991
Protocol on Long-term Financing of the Cooperative Programme for Monitoring and evaluation of the Long- range Transmission of Air Pollutants in Europe (EMEP)	1984	1988	2001
Protocol on Persistent Organic Pollutants	1998	2003	2012
Protocol on Heavy Metals	1998	2003	2012
Protocol to Abate Acidification, Eutrophication and Ground-level Ozone ("Gothenburg Protocol").	1999	2005	Postponed

In accordance with CLRTAP Executive Body's Decision 2002/10, on emission data reporting under the Convention and the Protocols in force, Serbia is obliged to report on air emissions in line with Emission Reporting Guidelines and methodology described in EMEP/EEA Emission Inventory Guidebook 2019. Specifically, the application of annual emissions under the CLRTAP consists of the preparation of:

- 1. NFR formats (emission inventory) and
- 2. Informative Inventory Report (IIR).

The NFR nomenclature (CLRTAP) is consistent with the CRF nomenclature under the UN Framework Convention on Climate Change (UNFCCC), with the overall aim of harmonization reporting formats. The national inventory is updated annually in order to reflect the availability of new information, sectorial improvements, implementation of higher tier (for example, Tier 2), change in methodology, identification of time series inconsistency, the accuracy of the estimates and the reduction of the uncertainty. Adjustments are applied retrospectively to earlier years, which accounts for any difference in previously published data.

1.1 NATIONAL INVENTORY BACKGROUND

The present Serbian CLRTAP Inventory for the period 1990 to 2022 was compiled according to the recommendations for inventories as set out by the UNECE Executive Body and in the EMEP/EEA Emission Inventory Guidebook 2019.

An important pre-condition for efficient data management system and development of the inventory is a clearly defined organization, competences and responsibilities of institutions involved in the process of developing the inventory, which includes a number of steps to be taken in the collection and processing of data, calculation, control and verification of emission inventories and documentation and communication to competent international bodies.

The total emissions time series by pollutants in 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2021 and 2022 in Serbia are given in table 2.

Table 2. The total emissions time series by pollutants in 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2021 and 2022 in Serbia

Pollutant	Unit	1990	1995	2000	2005	2010	2015	2020	2021	2022
NO _x	kt	183.02	151.80	146.57	165.28	147.63	145.05	176.23	174.22	184.92
NMVOC	kt	191.20	145.19	148.95	148.61	136.15	125.23	136.91	134.79	134.19
SOx	kt	576.59	499.18	463.12	443.69	401.35	362.39	417.62	378.53	377.40
NH₃	kt	126.01	114.70	106.86	106.79	91.52	85.96	79.63	72.23	71.02
PM _{2.5}	kt	54.69	34.81	40.03	39.71	42.58	37.85	57.98	58.90	60.23
PM ₁₀	kt	73.26	49.74	54.12	54.34	56.58	52.35	74.52	76.03	78.30
TSP	kt	158.16	100.19	87.45	114.77	103.74	93.10	91.43	92.74	94.35
ВС	kt	4.39	2.73	3.15	3.11	3.77	3.32	5.18	5.45	5.78
со	kt	517.88	351.38	400.16	403.36	348.36	269.34	367.86	364.73	366.74
Pb	t	372.20	285.45	196.72	234.70	105.65	35.84	33.01	38.31	42.14
Cd	t	3.99	2.42	1.96	1.88	1.84	2.10	2.77	2.57	2.18
Hg	t	2.77	2.15	2.12	2.19	2.10	1.69	1.63	1.45	1.37
As	t	7.76	6.09	5.58	5.53	5.06	5.19	5.48	5.08	4.85
Cr	t	11.62	6.86	7.28	10.05	10.37	8.80	11.15	13.30	14.95
Cu	t	15.57	9.99	8.81	12.35	13.74	13.77	22.45	22.23	20.65
Ni	t	16.89	9.95	8.76	22.89	21.36	14.37	13.48	15.00	15.41
Se	t	17.74	15.95	14.34	13.64	12.54	13.25	13.22	12.14	12.15
Zn	t	49.85	30.40	36.92	54.70	62.56	48.85	62.14	63.23	65.36
PCDD	g I-TEQ	70.46	44.57	53.44	60.13	58.74	50.81	74.22	73.60	71.97
benzo a pyren	t	11.30	6.77	8.96	8.44	8.01	6.43	9.89	9.12	8.99

benzo b fluoranthen	t	13.26	7.95	10.86	10.15	9.15	7.17	10.79	9.52	9.36
benzo k fluoranthen	t	5.24	3.16	4.30	4.02	3.59	2.81	4.24	3.74	3.67
Indeno 1,2,3 pyren	t	6.07	3.69	4.74	4.52	4.38	3.58	5.54	5.23	5.17
Total 1-4 PAH	t	41.66	21.84	30.37	30.49	28.47	22.69	33.55	30.93	30.34
НСВ	kg	2.87	2.50	2.31	2.23	2.12	2.21	2.32	2.16	2.18
РСВ	kg	844.22	837.02	816.17	774.37	805.48	725.21	733.40	763.92	700.87

1.2 INSTITUTIONAL ARRANGEMENTS

In terms of organizational arrangements, a centralized model has been applied in Serbia. From institutional point of view, Ministry of Environmental Protection is a National Focal Point for LRTAP Convention, while inventory preparation is under responsibility of Serbian Environment Protection Agency (SEPA).

SEPA undertakes all activities in preparation of NFR tables and IIR from collecting data. All data that are necessary for preparation these tables were collected in SEPA. The main official sources of activity data for the inventory of pollutant emissions are given in table 1.3.

Activity data provided through questionnaires completed directly by individual emission sources or other specialized institutions are used in the development of the inventory to calculate and check data provided by official publications.

The main official sources of activity data for the inventory of pollutant emissions are:

- The Central Bureau of Statistics that, on the basis of the statistic survey programme, collects data on the amounts of raw materials and products relating to activities defined by the National Classification of Business Activities;
- The Ministry of Interior keeps databases of road and off-road vehicles.
- SEPA that collects data from emission point sources

Activity data provided through questionnaires completed directly by individual emission sources or other specialized institutions are used in the development of the inventory to calculate and check data provided by official publications.

1.3 INVENTORY PREPARATION PROCESS

The process of inventory preparation has three main phases: (1) planning, (2) preparation and (3) reporting and archiving. The preparation of the inventory includes the following three stages as illustrated below.

I Planning

In the first stage specific responsibilities are defined and allocated: as mentioned before, the SEPA has the overall responsibility for the national CLRTAP inventory, and also, SEPA is executive institution for this inventory.

Planning phase includes activities related to organizational and technical aspects of inventory preparation such as: preparation of timetable according to EMEP reporting programme, preparation a schedule of data collecting and data analysis activities, data quality control and quality assurance activities, review of existing/updated reporting guidelines and guidebooks, review of emission factors and analysis of recommendations for inventory improvement from previous submissions or

.____

gave by expert review teams if such exists.

In accordance with Air Pollution Studies No. 15, Guidelines for Estimating and Reporting Emission Data under the Convention on Long-range Transboundary Air Pollution8, TFEIP, 2003 each Party should submit to the LRTAP Convention data on emissions in electronic format as follows:

- Each year until 15 February Parties should submit complete inventory with information on air emissions listed in Part B, and for all sectors listed in Annex III of reporting guidelines in the calendar year which ends 13 months before aforementioned,
- Every fifth year, starting from year 2000, until 15 February information on emissions from Large Point Sources. i.e. sources which emit more than 500 tonnes of SO2, NOx, NMVOC-a or total suspended particles (TSP).
- Every fifth year until 15 February information on emission projections and activity data projections for years 2010, 2015, 2020, 2030 and 2050.
- Every fifth year, starting from 1990, until 1 March Parties should submit in electronic format spatial distribution of emissions in EMEP grid 50x50
- Each year until 15 March, starting from 2007, Parties should submit Informative Inventory Report.

Detailed and updated information related to deadlines and scope of reporting are available on official EMEP9 /CEIP10 web page – www.ceip.at/.

Inventory preparation

Inventory preparation phase includes identification and updating of emission sources according to Nomenclature for Reporting, collection and processing of activity data, emission calculation and recalculations if necessary, filling the database and preparation of report and tables. In the second stage, the inventory preparation process, SEPA collect activity data and all other relevant information needed for estimating emissions. SEPA is also responsible for methodological choices due to data availability.

Inventory management

For the inventory management a reliable data management to fulfill the data collecting and reporting requirements is needed. As mentioned above, data collection is performed by the SEPA.

Data management is carried out by using MS Excel spreadsheets, which is a very flexible system that can easily be adjusted to new requirements.

The data is stored on a central network server for National Registers of Polluters in SEPA premises.

1.4 METHODS AND DATA SOURCES

Methodologies

Emission estimates were prepared using the methodology agreed upon by the Executive Body - EMEP/EEA air pollutant emission inventory guidebook — 2019. Further, other internationally applied methodologies and guidelines including National PRTR register and Intergovernmental Panel on Climate Change (IPCC) Guidelines were used.

Emissions from road transport are calculated using application COPERT 5 version 5.2.2 that contains activity data on vehicle fleet and procedures for emissions calculation from road transport.

In combination with software tools, EMEP/EEA methodology aims to obtain consistency, completeness, comparability and transparency of the emissions estimates utilizing two basic methodological approaches:

- "Bottom-up", where total emissions from defined territory are determined by summing the measured/estimated emissions from all individual sources on defined territory. In case when one or more sources are missed out inventory is incomplete which leads to lower level of emissions.
- "Top-down" where total emissions from defined territory are determined from aggregate statistical data (for instance total fuel consumption or cement production) and average emission factors that give the best estimation of activities (sectors) under consideration.

Due to evident advantages and shortcomings of both approaches inventory agency in practice utilize both of them with emphasis on achieving a balance between resources available and quality of estimations.

Emissions are calculated on the base of the standard methods and procedures of EMEP/EEA Air Pollutant Emission Inventory Guidebook "Technical Guidance to Prepare National Emission Inventories" (2019).

Emission factors used are default except for coal (lignite), which is the most important fuel in Serbia to obtain, primarily electricity in large thermo-power plants, but also for heat and steam production in communal and industrial thermo plants.

During 2016 a detailed analysis of available data concerning the use of coal (lignite) in electricity and heat production, as well as the technical characteristics for coal has been carried out. It was found that the amount of sulfur in lignite is around 0.5%, but net calorific value is rather low, ranging between 6,000 - 7,000 kJ/kg of fuel.

Based on the available data, national emission factor for lignite was calculated and average value is 1350 g/GJ. Default value for this type of fuel in EMEP/EEA emission inventory guidebook 2019 is 1680 g/GJ.

Also new elementary lignite analysis was performed for the period 2015 – 2022 based on which a new national emission factor for this period was calculated and average value is 1162 g/GJ.

The levels of methods used for the different NFR sectors are given in table 3.

Table 3. The levels of methods used for the different NFR sectors:

Public electricity and heat production, Petroleum refining	Tier 1
Iron and steel, Non-ferrous metals, Stationary combustion in manufacturing industries and	Tier 2
construction: Other	TICI Z
Civil aviation (domestic, LTO), International aviation (LTO)	Tier 1
Vehicles, Road transport: Gasoline evaporation, Road vehicle tire and brake wear, Road	COPERT
surface wear	COPER
Railways	Tier 1
National navigation (Shipping)	Tier 1
Commercial / institutional: Stationary, Residential: Stationary plants	Tier 1
Coal mining and handling, Oil – Exploration, production, transport, Refining/storage,	
Distribution of oil products	Tier 1
Natural gas	Tier 1
Venting and flaring	Tier 1
Cement production	Tier 1
Lime production	Tier 1
Asphalt roofing	Tier 1
Road paving with asphalt	Tier 1
Quarrying and mining of minerals other than coal, Construction and demolition, Storage,	
handling and transport of mineral products, Other	Tier 1
Ammonia production	Tier 1

Nitric acid production Tier 1 Other chemical industry Tier 2 Iron and steel production, Aluminium production, Copper production, Lead production, Other metal production (Magnesium production) Tier 2 Pulp and paper Tier 1 Food and drink Tier 2 Wood processing Tier 1 Consumption of persistent organic pollutants and heavy metals Tier 1 Decorative coating application, Industrial coating application Tier 2 Degreasing, Dry cleaning Chemical products Tier 2 Printing, Domestic solvent use including fungicides Other product use Tier 2 Dairy cattle on slurry, Cattle non-dairy, Sheep Goats, Horses, Swine, poultry Tier 1 Synthetic N-fertilizers Tier 1 Solid waste disposal on land Tier 1 Waste water handling Tier 1 Cremation Tier 1 Forest fires Tier 1

Official data sources

Activity data needed for emissions calculation are extracted from regular publications and databases of Central Bureau of Statistics and other relevant governmental organizations and ministries. For particular sub-sectors and source categories, more detailed data are required then those published in official statistical reports, such as disaggregated energy balance, vehicle fleet etc. Beside official publications inventory agency sent questionnaires directly to some of the Large Point Sources asking for activity data which they use for emissions calculations in order to check consistency of data provided by different sources.

1.5 KEY CATEGORIES

The identification of key categories is described in the "EMEP/EEA air pollutant emission inventory guidebook 2019" (EEA 2019)". It stipulates that a key category is one that is prioritised with-in the national inventory system because its is significantly important for one or a number of air pollutants in a country's national inventory of air pollutants in terms of the absolute level, the trend, or the uncertainty in emissions (EEA 2019).

Furthermore, it is good practice to identify the national key categories in a systematic and objective manner. This can be achieved by a quantitative analysis of the relationship between the magnitude of emission in any year (level) and the change in emission year to year (trend) of each category's emissions compared to the total national emissions;

To focus the available resources for improvement in data and methods on categories identified as key. The identification of key categories in national inventories enables the limited resources available for preparing inventories to be prioritised; more detailed, higher tier methods can be selected for key categories. Inventory compilers should use the category specific methods presented in sectoral decision tress in the sectoral volumes;

The analysis should be performed at the level of NFR categories or subcategories at which the guidebook methods and decision trees are provided in the sectoral volumes. Where possible, some categories should be disaggregated by main fuel types that each air pollutant emitted from each category should be considered separately;

For each key category, the inventory compiler should determine if certain subcategories are

particularly significant usually, for this purpose, the subcategories should be ranked according to their contribution to the aggregate key categories. Those subcategories that contribute together more than 60% to the key category should be treated as particularly significant. It may be appropriate to focus efforts towards methodological improvements of these most significant subcategories.

All notations, descriptions of identification and results for key categories included in this chapter are based on the latest Inventory Guidebook (EEA 2019).

The identification includes all NFR categories and all reported gases

SO2, NOx, NMVOC, NH3, CO

PM: TSP, PM10, PM2.5

HM: Cd, Hg, Pb

POP: PAH, PCDD/F, HCB, PCB

Used methodology for identification of key categories: Approach 1

The methodology follows the IPCC approach to produce pollutant-specific key categories and covers for both level and trend assessment. In Approach 1, key categories are identified using a predetermined cumulative emissions threshold. Key categories are those which, when summed together in descending order of magnitude, cumulatively add up to 80% of the total level.

The suggested aggregation level of analysis for Approach 1 provided in Table 2-1 of Chapter 2 of the EMEP/EEA emission inventory guidebook 2019 was used. No special considerations like disaggregation to main fuel types have been made. For reasons of transparency, the same level of aggregation for all pollutants was used.

The presented key category analysis was performed by the SEPA with data for air emissions of the submission 2022 to the UNECE/LRTAP. For all gases a level assessment for all years 1990 (base year) and 2022 (last year), as well as a trend assessment for 1990 to 2022 was prepared.

In the following tables are presented important sources for many pollutants, separately key categories by sectors.

1.A Combustion Activities

Table 4. Sources for pollutants, separately key categories by sectors.

1.A Combustion Activities is the most important sector for emissions reported to UNECE.

NFR	Category
1A1a	Public electricity and heat production
1A1c	Manufacture of solid fuels and other energy industries
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)
1A3bi	Road transport: Passenger cars
1A3bii	Road transport: Light duty vehicles
1A3biii	Road transport: Heavy duty vehicles and buses
1A3bv	Road transport: Gasoline evaporation
1A3bvi	Road transport: Automobile tyre and brake wear
1A4ai	Commercial/institutional: Stationary
1A4bi	Residential: Stationary
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery

1.B Fugitive emissions

NFR	Category
1B1a	Fugitive emission from solid fuels: Coal mining and handling
1B1b	Fugitive emission from solid fuels: Solid fuel transformation
1B2av	Distribution of oil products

2. Industrial processes and product use

NFR	
2A2	Lime production
2A5a	Quarrying and mining of minerals other than coal
2B10a	Chemical industry: Other (please specify in the IIR)
2C1	Iron and steel production
2C7a	Copper production
2D3a	Domestic solvent use including fungicides
2D3b	Road paving with asphalt
2D3h	Printing
2D3i	Other solvent use (please specify in the IIR)
2H1	Pulp and paper industry
2H2	Food and beverages industry
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)

3. Agriculture

NFR	
3B1a	Manure management - Dairy cattle
3B1b	Manure management - Non-dairy cattle
3B3	Manure management - Swine
3B4gi	Manure mangement - Laying hens
3Da1	Inorganic N-fertilizers (includes also urea application)
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products
3F	Field burning of agricultural wastes

4. Waste

NFR	
5A	Biological treatment of waste - Solid waste disposal on land
5C1bv	Cremation

5. Memo item

NFR	
11B	Forest fires

1.6.QA/QC AND VERIFICATION METHODS

Quality management system

SEPA is responsible for the preparation of GHG and air pollutant inventory under UNECE/CLRTAP and UNFCCC.

SEPA is also responsible for coordination and implementation of QA/QC activities for the national inventories. A quality manger is in place.

The QA/QC plan is an internal document to organize, plan and implement QA/QC activities. Once developed for the next submission, it is referenced and used in subsequent inventory preparation, or modified as appropriate.

National QA/QC Plan includes following elements:

- Responsible institutions;
- Data collection;
- Preparation of inventory;
- QC Procedures;
- QA Procedures and Verification;
- Uncertainty evaluation;
- Organisation of the activities in quality management system;
- Documentation and archiving.

Institutional arrangements within the SEPA regulate the responsibilities of all engaged institutions for implementation of the requirements of the National QA/QC Plan.

The QC procedures are performed by experts, who are directly involved in the process of preparation of inventory with their specific responsibilities.

The QC experts are responsible for activity data provision, involved in the choice of method and selection of emission factors, and preparing the sector inventories (including preparation of reporting tables and respective chapters from the national reports).

All institutions – data providers, are responsible for quality of information, which are necessary for preparation of national emission inventories.

Quality Assurance (QA) is a planned system of review procedures conducted by personnel not directly involved in the inventory compilation/development process. The quality assurance process includes expert review was conducted in two stages: a review of the initial set of emission estimates and, a review of the estimates and text of the Inventory Report.

The QA procedures include the following checks:

• Transparency means that Parties should provide clear documentation and report a level of disaggregation that sufficiently allows individuals or groups other than the designated emission expert or the compiler of the inventory or projection to understand how the inventory was compiled

and assure it meets good practice requirements. The transparency of reporting is fundamental to the effective use, review and continuous improvement of the inventory and projection;

- Consistency means that estimates for any different inventory years, gases and source categories are made in such a way that differences in the results between years and source categories reflect real differences in emission estimates. Annual emissions, as far as possible, should be calculated using the same method and data sources for all years, and resultant trends should reflect real fluctuations in emissions and not the changes resulting from methodological differences. Consistency also means that, as far as practicable and appropriate, the same data are reported under different international reporting obligations. For projections, consistency means that a year of the submitted inventory is used as a basis;
- Comparability means that the national inventory and projection is reported in such a way that allows it to be compared with other Parties. This can be achieved by using the reporting templates and through the use of the harmonized Nomenclature for Reporting (NFR);
- Completeness means that estimates are reported for all pollutants, all relevant source categories and all years and for the entire territorial areas of Parties covered by the reporting requirements set forth in the provisions of the Convention and its protocols;
- Accuracy means that emissions are neither systematically overestimated nor underestimated, as far as can be judged. This implies that Parties will endeavour to remove bias from the inventory estimates and minimize uncertainty.

For 2020 submission the QA procedures are implemented by sector experts within the SEPA, who are not directly involved in the preparation of inventory.

Information of the QA/QC activities

The cycle of QA/QC activity for inventory consists of the following steps:

- 1. The QA/QC Manager prepares a Plan for implementation of QA/QC activities for the current submission. The checklists with all specific QA/QC procedures are part of the plan;
- 2. The plan for QA/QC is sent to all engaged QC and QA experts for implementation;
- 3. In the process of preparation of inventory the QC experts (activity data provider and SEPA's experts) apply each of the specific procedures set in the checklist for each of the sources categories they are responsible for.
- 4. The QA/QC Manager coordinates the exchange of the check lists between the QC experts for correction of the findings with input data for calculation of emissions (activity data and EF).
- 5. The QA/QC Manager send to the QA experts the prepared by SEPA's expert and/or external consultants CRF/NFR tables and respective chapters from NIR/IIR;
- 6. The QA/QC Manager coordinate the exchange of the check lists between the QA experts and SEPA's expert and/or external consultants for correction of the findings with quality of the inventory (CRF/NFR and NIR/IIR);
- 7. The QA/QC Manager prepares a summary of the results from implemented QA/QC checks.
- 8. The QA/QC Manager prepares an attendant file for implemented procedures;
- 9. The QA/QC Manager is responsible for documentation and archiving of all documents, related to perform QA/QC procedures, and archiving of inventory in SEPA.

QA/QC activities of data provider

Based on the National QA/QC Plan each of the institutions has nominated experts, responsible for preparation of the required information as well as for implementation of QA/QC procedures.

The QC experts are all experts from the institutions, who are providing data for preparation of national emission inventories.

All institutions are responsible for quality of information. The institutions are obligated to implement all requirements of the international and national standards for collection, processing and provision of activity data from them competence.

Table 5. QA/QC and verification methods

Table 5. QA	/QC and verific	cation methods		
	QC checl	ks / reviews	QC others (Correction)
Activity	Expert name	Period / deadline	QA / QC manager / other person	Deadline
DATA COLLECTION ACTIVITIES				
		Until the		
Checks all input data for emission calculations	Andjelka	beginning of		
properly referenced	Radosavljevic	December	Nebojsa Redzic	December
	Andjelka			
Check availability of literature material	Radosavljevic		Nebojsa Redzic	
ACTIVITY DATA ENTRY IN DATABASES AND EMISS	ION CALCULATIO	N	T	
Check criteria for selection of activity data,				
emission factors and other necessary parameters	Andjelka			D
for emissions calculation	Radosavljevic	December	Nebojsa Redzic	December
Cross-check descriptions of input data and the				
emission factors with information about	Andjelka			December
categories	Radosavljevic	December	Nebojsa Redzic	December
Check the correctness of interpretation and use	A1! - 11 -			
of	Andjelka	Dogombor	Noboico Dodaio	December
activity data and emission factors Check that the parameters and units are	Radosavljevic	December	Nebojsa Redzic	December
accurately recorded	Andjelka Radosavljevic	Docombor	Noboica Podzie	December
accurately recorded	Andjelka	December	Nebojsa Redzic	December
Check that used appropriate conversion factors	Radosavljevic	December	Nebojsa Redzic	December
Check whether the unit is properly marked in the	Andjelka	December	Nebojsa Neuzic	December
worksheets	Radosavljevic	December	Nebojsa Redzic	December
Check the consistency of data between the	Andjelka	2000	. resejea nearie	
categories	Radosavljevic	December	Nebojsa Redzic	December
Identified e.g. activity data common to several	Andjelka		,	
categories	Radosavljevic	December	Nebojsa Redzic	December
-	Andjelka			
Check the consistency of the activity data	Radosavljevic	December	Nebojsa Redzic	December
Check the consistency of time series of input	Andjelka			
activity data for each category	Radosavljevic	December	Nebojsa Redzic	December
DATABASES ITEMS				
Check whether all the categories covered by the				
emission sources that exist in the country, if not				
whether there are marked with the appropriate	Andjelka			D
notation key ("NO")		December	Nebojsa Redzic	December
Check whether there is double counting, i.e.	Andjelka			Dosombor
duplication of entries	Radosavljevic	December	Nebojsa Redzic	December
Check out the use of units and all necessary	Andjelka	D	Nahada Badi	December
conversions of the same	Radosavljevic	December	Nebojsa Redzic	Deceilibei
Used to check the consistency of data on	Andjelka	Docombos	Noboica Badaia	December
activities	Radosavljevic	December	Nebojsa Redzic	December

for each pollutant within each category.				
Check the correctness of the emissions	Andjelka			
calculation	Radosavljevic	December	Nebojsa Redzic	December
	Andjelka			
Check the consistency of trends	Radosavljevic	December	Nebojsa Redzic	December
PREPARING IIR (INFORMATIVE INVENTORY REPO	RT)			
	Andjelka	10. February to		the 14th
Check the values in the text and excel tables	Radosavljevic	14th March	Nebojsa Redzic	March
	Andjelka	10. February to		the 14th
Check out the Figures	Radosavljevic	14th March	Nebojsa Redzic	March
ARCHIVING				
	Andjelka			
Archiving Excel Table	Radosavljevic	from April		
	Andjelka			
Archiving of data sources	Radosavljevic	from April		
	Andjelka			
Archiving IIR	Radosavljevic	from April		

1.7 GENERAL UNCERTAINTY EVALUATION

The overall uncertainty is closely related to the emission sources data uncertainty (fuels, activities, processes, etc.) and to the emission factor uncertainty.

The same team in SEPA, which is dealing with GHG inventory, is also responsible for preparation of UNECE/CLRTAP inventory. At the moment tier 1 uncertainty analysis is implemented in the GHGs inventory under UNFCCC.

For UNECE/CLRTAP a quantitative estimate of inventory uncertainty for each source category and for the inventory in total will be presented in the next submissions.

1.8 GENERAL ASSESSMENT OF COMPLETENESS

According to reporting guidelines, in cases when methodological and data gaps exist in the inventory, parties to the Convention are required to inform and explain in a transparent manner the reason of their appearance, also the emission of certain emission sources from the inventory. To accomplish this, Parties have to use designated notation keys, Explanation of the meaning and the purpose of notation keys are presented in the following subchapter.

The emission data presented in this report were compiled according to the Guidelines for Reporting Emission Data approved by the Executive Body for the UNECE/LRTAP Convention.

The inventory is complete with regard to reported gases, reported years and reported emissions from all sources, and also complete in terms of geographic coverage. All relevant pollutants are covered by the Serbian inventory and are reported for the years 1990–2022.

Notification keys are used according to the Guidelines for Estimating and Reporting Emission Data under CLRTAP to indicate where emissions are not occurring in Serbia, where emissions have not been estimated or have been included elsewhere as suggested by EMEP/EEA emission inventory guidebook 2019. The main reasons for different allocations to categories are the allocation in national statistics, insufficient information on the national statistics, national methods, and the impossibility to disaggregate emission declarations.

Table 6. Notification keys used in NFR emission tables for sectors and sub-sectors

Notification	Meaning	Purpose
key		
NO	Not occurring	For activities or processes which do not exist in Republic of Serbia/ for emissions by sources of compounds that do not occur for a particular compound or source category;
NE	Not estimated	Where emission occur, but have not been estimated or reported
NA	Not applicable	When activity or process exist, but it is assumed that they do not result with emission / Is used for activities which are believed to result in emission which are insignificant to national totals;
IE	Included elsewhere	Where emissions for mentioned activity or process are calculated and included in inventory, but did not separately presented for this source category / For emissions of pollutants which are calculated, but included elsewhere from expected source category in the inventory;
С	Confidential	For emissions by sources of compounds which could lead to the disclosure of confidential information
NR	Not relevant	According to paragraph 9 in the Emission Guidelines, Emission inventory reporting should cover all years from 1980, Onwards, if data are available, Where emissions are not strictly required by the different Protocols, e.g. for some parties emissions of NMVOC prior to 1988

Table 7. Sources reported as "NE"

NFR code	Substance(s)	Reason for not estimation
1 A 1 a	All relevant	No available data for Hard coal from
		1992-1999 and from 2010-2022
1 A 1 a	All relevant	No available data for Light oil-gas oil
		from 1990-2004
1 A 1 a	All relevant	No available data for Biomass from
		1990-2006
1 A 1 b	All relevant	No available data from 1990 - 1999
1A2c	All relevant	No available data for Combustion in
		industry using liquid fuels for 1990 and
		from 1993-2007
1A2c	All relevant	No available data for Combustion in
		industry using biomass from 1990-2007
1A2d	All relevant	No available data for Combustion in
		industry using liquid fuels from 1990-
		2007
1A2d	All relevant	No available data for Combustion in
		industry using biomass from 1990-2007
		and for year 2011
1A2d	All relevant	No available data for Combustion in
		industry using Solid fuels for 2014
1A2e	All relevant	No available data for Combustion in
		industry using liquid fuels from 1990-
		2007
1A2e	All relevant	No available data for Combustion in

		industry using biomass from 1990-2007
1A2f	All relevant	No available data for Plaster (gypsum)
		manufacture for 1993 and from 2004-
		2022
1A2f	All relevant	No available data for Fine ceramic
		materials from 2016-2022
1A2f	All relevant	No available data for Roadstone coating
		(asphalt) plants for 1994
1A2gvii	All relevant	No available data for Diesel from 1990-
		2006
1A2gvii	All relevant	No available data for Gasoline: four-
		stroke 1990-2006
1A2gviii	All relevant	No available data for Hard coal from
		1991-2004, for 2008, 2011, 2012 and
		from 2014-2022
1A2gviii	All relevant	No available data for Brown coal from
		1990-2004
1A2gviii	All relevant	No available data for Gaseous fuels
		from 1991-2004
1A2gviii	All relevant	No available data for Heavy Fuel Oil
		from 1991-2004
1A2gviii	All relevant	No available data for Light oil-gas oil
		from 1990-2004
1A2gviii	All relevant	No available data for Biomass for all
		years except 2006 and 2007
1A2gviii	All relevant	No available data for Other Biomass
		from 1990-2007
1A4ai	All relevant	No available data for Gaseous fuels
		from 1990-2007
1A4ai	All relevant	No available data for Liquid fuels from
		1990-2007
1A4bi	All relevant	No available data for Other Liquid Fuels
		from 1990-2006
1A4bi	All relevant	No available data for Gaseous Fuels for
		1990 and 1991
1A4ci	All relevant	No available data for Gaseous fuels
		from 1990-2006
1A4ci	All relevant	No available data for Liquid fuels from
		1990-2006
1A4ci	All relevant	No available data for Biomass from
		1990-2007
1A4ci	All relevant	No available data for Hard Coal and
		Brown Coal from 2013 - 2016
1A4cii	All relevant	No available data for Diesel-Agriculture
		from 1990-2006
1A4cii	All relevant	No available data for LPG from 1990-
		2006
1A4cii	All relevant	No available data for Gasoline: four-
		stroke from 1990-2006 and from 2013-
		2022

-			
	1B1c	All relevant	No available data
	1B2c	All relevant	No available data for Flaring in oil
			refineries 1990-1999
	1B2d	All relevant	No available data
	2A6	All relevant	No available data
	2B10a	All relevant	No available data for Urea for 2010
ĺ	2B10a	All relevant	No available data for Ethylene from
ļ			1993-1995
	2B10a	All relevant	No available data for Polyethylene Low
			Density from 1993-1995
	2B10a	All relevant	No available data for Polyethylene High
			Density from 1993-1995
	2B10a	All relevant	No available data for Styrene from
ļ			1990-1999 and from 2014-2022
	2C7a	All relevant	No available data for Secondary copper
			production from 1990-1999
	2L	All relevant	No available data
	3Da2a	All relevant	No available data
	3Da2b	All relevant	No available data
	3Da2c	All relevant	No available data
	3Da3	All relevant	No available data
	3Da4	All relevant	No available data
	3Db	All relevant	No available data
	3Dd	All relevant	No available data
	5B1	All relevant	No available data
	5B2	All relevant	No available data
	5C2	All relevant	No available data
	5D2	All relevant	No available data from 1990-2003
	5E	All relevant	No available data
Į)[All relevant	INO available uata

Table 8.Explanation of the notation кеу "IE"

NFR code	Substance(s)
1A3di(ii)	All relevant
1A3eii	All relevant
1A4aii	All relevant
1A4bii	All relevant
1A4ciii	All relevant
1A5a	All relevant
1A5b	All relevant
	NOx, NMVOC,
2A1	SOx, CO, HMs
	and POPs
	(except PCBs)
2A2	NOx, SOx, CO
2A3	NOx, SOx, CO
2B10b	All relevant

Table 9. Sources reported as "NO"

NFR code	Substance(s)
1 A 3	All relevant
1A3ai(ii)	All relevant
1A3di(i)	All relevant
1A3ei	All relevant
1A5c	All relevant
2B3	All relevant
2B5	All relevant
2B6	All relevant
2B7	All relevant
2C2	All relevant
2C7b	All relevant
2C7c	All relevant
2C7d	All relevant
2G	All relevant
2H3	All relevant
2J	All relevant
3B4a	All relevant
3B4f	All relevant
3B4h	All relevant
31	All relevant
5C1a	All relevant
5C1bi	All relevant
5C1bii	All relevant
5C1biii	All relevant
5C1biv	All relevant
5C1bvi	All relevant
5D3	All relevant
6A	All relevant
6B	All relevant
11A	All relevant
11C	All relevant

2. EXPLANATION OF KEY TRENDS

This chapter gives an overview of the methodology for the key source analysis by observed pollutants, the results of key sources analysis with an overview of the change in share from 1990 to 2022, then overview of direct emissions of large point sources in Serbia.

2.1. The methodology for key source analysis

The methodology used to identify key source categories of individual pollutant follows the quantitative Approach 1 described in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. In Approach 1, key categories are identified using a predetermined cumulative emissions threshold. Key categories are those which, when summed together in descending order of magnitude, cumulatively add up to 90 % of the total.

2.2. Key source analysis

The analysis of key sources in Republic of Serbia includes all pollutants under CLRTAP and associated protocols: pollutants which causes acidification, eutrophication and ground-level ozone (SO₂, NO_x, CO, NMVOC and NH₃), particles (TSP, PM₁₀ and PM_{2,5}), heavy metals (Pb, Cd and Hg), other heavy metals (As, Cr, Cu, Ni, Se and Zn) and persistent organic pollutants (benzo(a) pyrene, benzo(b) fluoranthene, benzo(k) fluoranthene, Indeno (1,2,3-cd) pyrene, total PAHs, PCDD/PCDF and PCB). National emissions have been disaggregated into the categories according to required reporting format (NFR).

SEPA conducted key source analysis. Here are presented the most important sources for each pollutant separately.

Table 10. Summary of key and main sources and their contributions to overall pollutant emissions and percentage of emission change

											%	. C	on	trik	ut	io	ns	to	pc	ollu	tar	nt t	ota	als	fc	or k	кеу	/ ca	iteç	goi	ries	(C	um	ula			309	%)					
NFR Code	NFR Categooy																													- 1.		<u> </u>			PAH								
					oc s		Ni		PM _{2.5}		PM ₁₀	TSP		ВС	CO		Pb		Cd	Hg		λs	Cr		Cu		Ni	Se	Z	л	PCDD/ PCDF	benzo) pyre	ne flu) orant	benzo) fluorar	(1,	deno ,2,3- cd)	4		СВ	PCBs	Sum of KC % Contributions	Rank
		LA	TAI	A T	A L	A TA	LA	TA	LA T	A LA	TA	LA 1	AL	A TA	LA .	TA	LA TA	A LA	TA	LA 1	A LA	TA	LA 1	ΓAL	A TA	A LA	TA	LA TA	LA	TA	LA TA	LA 1	ΓA LA	TA.	LA T	A LA	TA	LA T	A LA	TA	LA TA		ـــــ
1A1a	Public electricity and heat production				91	ı	1 1			1																																91	6
1A1b	Petroleum refining																																										
1A1c	Manufacture of solid fuels and other energy industries																																										
1A2a	Stationary combustion in manufacturing industries and						1 1			1																																	
4.405	Stationary combustion in	H	_	$^{+}$	+	+	Н	\vdash		+		\vdash	†	+	H	7	+	1			1		-	$^{+}$	+	1		_	\dagger	\dashv	+	tt	+	+	-		1		1				_
1A2b	manufacturing industries and	Н	_	4	_	-	Н	ш	_	_		₩	4	_	\vdash	4	_	_			_		_	4	_	-		_	ш	_	_	₽	_	\bot	_	_			_				—
1A2c	Stationary combustion in manufacturing industries and	Ц	4	_	_	_	Ш			1		Ш										Ш		_	_				Ш			Ш		Ш									Ь—
1A2d	Stationary combustion in manufacturing industries and						1 1																																				
1A2e	Stationary combustion in manufacturing industries and						П																																				
1A2f	Stationary combustion in manufacturing industries and																																										
1A2gvii	Mobile Combustion in manufacturing industries and																																										
1A2gviii	Stationary combustion in manufacturing industries and						Ш																																				
1A3ai(i)	International aviation LTO (civil)	Ш					Ш																						Ш			Ш											
1A3aii(i)	Domestic aviation LTO (civil)	Ш																				Ш										Ш											
1A3bi	Road transport: Passenger cars	Ш					Ш	Ц														Ш							Ш			Ш											
1A3bii	Road transport: Light duty vehicles	Ц					Ш					Ш			Ш				Ш			Ш							Ш			Ш											<u> </u>
1A3biii	Road transport: Heavy duty vehicles and buses																																										
1A3biv	Road transport: Mopeds & motorcycles																																										
1A3bv	Road transport: Gasoline evaporation	Ш																				Ш										Ш											
1A3bvi	Road transport: Automobile tyre and brake wear	Ш					Ш	Ц														Ш							Ш			Ш											
1A3bvii	Road transport: Automobile road abrasion	Ц	4	\downarrow	\perp	_	Ц	Ц		\downarrow		Ш	1		Ш	1	┸		Щ			Ц	\perp	\downarrow			Ц	_	$oldsymbol{\perp}$	4		Ш	\perp	\sqcup									Щ
1A3c	Railways	Ц	_	_			Ш	Ц		_					Ц		_		Щ		_	Ц	4	_		\perp	Ц	_	Ш			Ш	\perp	Ш	_	_							Ь—
1A3di(ii)	International inland waterways National navigation (shipping)	Ц	_	_	\perp	_	Н	Ц		_		Ш	1	-	Ц		4	1	Ш	Ц	1	Ц	_	_	1		Ц	_	\sqcup			\sqcup	\perp	Ш	_	_	\sqcup		_	<u> </u>	$oxed{oxed}$	<u> </u>	<u> </u>
1A3dii	Pipeline transport	Ц	\downarrow	\downarrow	\downarrow	\downarrow	Ц	Ц	\downarrow	\downarrow		\sqcup	\downarrow	1	\sqcup	_	\bot	\downarrow	Ц	\sqcup		Ц	\perp	\downarrow	\downarrow		Ц	\perp	$\downarrow \downarrow$	\Box	\bot	\sqcup	\perp	\bot	\bot	\downarrow	L		\downarrow	L		<u> </u>	
1A3ei	Other (please specify in the IIR)	Ц	\downarrow	+	\downarrow	\downarrow	Н	\sqcup	\downarrow	\downarrow		\sqcup	\downarrow	\bot	\sqcup	4	+	╄	Н	\vdash	\downarrow	Н	\dashv	+	\downarrow	\bot	Щ	+	$\downarrow \downarrow$	\dashv	\bot	\sqcup	+	igspace	\dashv	\downarrow			+	L			₩
1A3eii	Commercial/institutional:	Н	4	+	\downarrow	\downarrow	\vdash	\sqcup	\downarrow	+		arphi	1	\bot	$\vdash \downarrow$	4	+	\downarrow	Н	\dashv	+	Ц	\rightarrow	+	1	\bot	Щ	+	$\downarrow \downarrow$	\dashv	\bot	\sqcup	+	igwdap	\dashv	+	H		\downarrow	L	\vdash		₩
1A4ai	Stationary Commercial/institutional: Mobile	H	4	+	\downarrow	\downarrow			_	\downarrow		$\vdash \vdash$	\downarrow	\bot	igwdap	4	+	╄	Н	\vdash	\bot		\dashv	+	-		Н	+	$\downarrow \downarrow$	$\downarrow \downarrow$	\bot	\sqcup	+	igapha	\rightarrow	+			-			ļ	
1A4aii	Residential: Stationary	H	4	+	+	\downarrow	\vdash	\sqcup	\downarrow	\downarrow		$\vdash \vdash$	\downarrow	-	$oldsymbol{arphi}$	4	+	╄	Н	\vdash	+		\dashv	+	+		Н	+	$\downarrow \downarrow$	$\downarrow \downarrow$	\bot	\sqcup	+	igapha	+	+			+			ļ	├─
1A4bi	Residential: Household and	H	4	+	\downarrow	\downarrow	Н	\sqcup	\downarrow	\downarrow		\sqcup	╁	╄	\sqcup	4	4	╄	Н	\dashv	\bot	Ц	\dashv	+	\downarrow	\bot	Щ	+	$\downarrow \downarrow$	\dashv	\bot	\sqcup	\downarrow	$oldsymbol{\sqcup}$	\rightarrow	+	L		_	┡	\vdash		├─
1A4bii	gardening (mobile) Agriculture/Forestry/Fishing:	Н	4	+	\downarrow	\downarrow	\vdash	\sqcup	\downarrow	+		arphi	1	\bot	$\vdash \downarrow$	4	+	+	Н	\dashv	+	Ц	\dashv	+	1	\bot	Щ	+	$\downarrow \downarrow$	\dashv	\bot	\sqcup	+	igwdap	\dashv	+	H		\downarrow	Ļ	\vdash		₩
1A4ci	Stationary	Ιĺ	- 1		1	1	1	1 1		1	1		1	1			- 1		1		1	1				1					- 1	1 1		1 1			1	1 1	1	1	1 I		I

							-		%	6 C	on	tril	but	io	ns	to	рс	ollu	ıta	nt	tot	als	fo	r k	еу	са	teç	jor	ies	s (c	um	ula	ativ	/e :	80°	%)						
NFR Code	NFR Categooy	NO _x	NMV		SO _X	NH ₃			PM ₁₀	TSF		вс	cc		Pb		Cd	Hg		As	Cr		Cu	N		Se	Zr	, [PCDD/	benz	ne flu) iorant	PAH benzo) fluora	k Ir (1 nt	ndeno 1,2,3- cd)	Total		HCB	PCB:	Contributio		ınk
		LA TA	LA	TA LA	\ TA	LA T	A LA	TA L	A TA	LA	TA L	A TA	LA	TA	LA TA	\ LA	TA	LA .	TA L	A TA	LA	TA L	A TA	LA	TA L	A TA	LA	TA L	A TA	LA	TA LA	A TA	LA T	A L	A TA	LA	TA L	A TA	LA T	A		
1A4cii	Agriculture/Forestry/Fishing: Off- road vehicles and other																																						1			
1A4ciii	Agriculture/Forestry/Fishing: National fishing		П																																						Т	\neg
1A5a	Other stationary (including military)		П																																							
1A5b	Other, Mobile (including military, land based and recreational																																									
1B1a	Fugitive emission from solid fuels: Coal mining and handling																																									
1B1b	Fugitive emission from solid fuels: Solid fuel transformation																																									
1B1c	Other fugitive emissions from solid fuels		П																																							
1B2ai	Fugitive emissions oil: Exploration, production, transport		П																																							
1B2aiv	Fugitive emissions oil: Refining / storage		П																																							
1B2av	Distribution of oil products		П																																							
1B2b	Fugitive emissions from natural																																									
1B2c	Venting and flaring (oil, gas, combined oil and gas)																																									
1B2d	Other fugitive emissions from energy production		П																																							
2A1	Cement production						9		4					T		T					П																T	T	П	13	1	8
2A2	Lime production													T		T					П																T	T	П			
2A3	Glass production																								5	52												I	П	52	1	1
2A5a	Quarrying and mining of minerals other than coal		rr	ľ				1	0	10						ľ			ľ																					20	1	4
2A5b	Construction and demolition																																						Ш			
2A5c	Storage, handling and transport of mineral products																																						Ш			
2A6	Other mineral products (please specify in the IIR)																																						Ш			
2B1	Ammonia production													T		T					П																Т	T	П			
2B2	Nitric acid production													T		T					П																Т	T	П			
2B3	Adipic acid production													T		T					П																T	T	П			
2B5	Carbide production																																									
2B6	Titanium dioxide production	П																			П						П		I		I											
2B7	Soda ash production	П																			П						П		I		I											
2B10a	Chemical industry: Other (please specify in the IIR)																																									
2B10b	Storage, handling and transport of chemical products (please	\prod		$oldsymbol{\perp}$					$oldsymbol{ol}}}}}}}}}}}}}} $			Ι							I		П					I			Ι		T			Ι				\perp				
2C1	Iron and steel production	П					5						49	1	94			60	65	5	84	3	19	87	4	18	99	8	15							82	9	99		897	1	1
2C2	Ferroalloys production			$oxed{oxed}$										J																	I						I		Ш			
2C3	Aluminium production		П																					П																		

											%	C	on	tri	bu	ıtic	ons	s to	o n	00	llut	an	t t	ota	als	fo	r ke	ev	cat	ea	or	ies	(C)	um	ula	ati	ve	80°	-						
	NET O .		_			_				_			_	_	_			_		_			_		_		1	,			_					PAI				_		_			
NFR Code	NFR Categooy	NO _X	NM	IVOC	SC	O _X	NH ₃	3 1	PM _{2.5}	PI	M ₁₀	TSF	>	вс	(co	PI	0	Cd		Hg	As	S	Cr		Cu	Ni	;	Se	Zn		CDD/	benzo	o(a	nzo(b) orant	benz) fluora	o(k lı	ndeno 1,2,3- cd)	Total 4	1-	HCB	P	CBs	Sum of KC % Contributions	Rank
		LA T	A LA	TA	LA	TA	LA 1	TA L	A TA	LA	TA	LA 1	ΓA L	A T	A LA	TΑ	LA	TA	LA T	A L	A TA	LA	TA	LA T	A L	A TA	LA T	A LA	A TA	LA T	TA LA	A TA	LA 1						LA	TA L	A T/	A LA	TA		
2C4	Magnesium production																																												
2C5	Lead production																																												
2C6	Zinc production			П				T					Ī																														П		
2C7a	Copper production		T	П			T	\dagger					Ť			t			63	Ť		34			5	7	Ħ		Ħ				Ħ				T	T	Ħ	T				154	3
2C7b	Nickel production			П		T	#	\top					T	T	T	T	Ħ	1	Ť	Ť			T		Ť		Ħ	T	Ħ				Ħ			Ħ		T	Ħ	T					
2C7c	Other metal production (please specify in the IIR)			П		T	#	\top					T	T	T	T	Ħ	1	Ť	Ť			T		Ť		Ħ	T	Ħ				Ħ			Ħ		T	Ħ	T					
2C7d	Storage, handling and transport of metal products			П		T	#	\top					T	T	T	T	Ħ	1	Ť	Ť			T		Ť		Ħ	T	Ħ				Ħ			Ħ		T	Ħ	Ť					
2D3a	Domestic solvent use including fungicides		18	П			1	\top					T			T			T	Ť			1		Ť	T	Ħ		1 1				Ħ					T	Ħ	T			П	18	15
2D3b	Road paving with asphalt			П		T	#	1	7	13		28	1	15	T	T	Ħ		Ť	Ť			T		Ť		Ħ	T	Ħ				Ħ			Ħ		T	Ħ	T				63	10
2D3c	As phalt roofing			П			#	\top					T	T	T	T	Ħ		Ť	Ť			T		Ť		Ħ	T	1 1				Ħ			Ħ		T	Ħ	T					
2D3d	Coating applications	T	T				Ť	T					Ť		T	t	Ħ		T	T					T		Ħ	T	Ħ				Ħ				T	T		T					
2D3e	Degreasing			H				Ť					ı				П			T					T		Ħ		Ħ										Ħ				П		
2D3f	Dry cleaning	\top	T				Ť	T					Ť		T	İ	Ħ		T	Ť					T		Ħ	T	Ħ				Ħ				T	T		T					
2D3g	Chemical products							T					T	T				T	T																										
2D3h	Printing		10					T					T	T				T	T																									10	20
2D3i	Other solvent use (please specify in the IIR)		6					4	3	12		6			20				21																								П	108	5
2G	Other product use (please specify in the IIR)						7	1					1																\Box																
2H1	Pulp and paper industry	13				7		1	1	4			1	1	30										ľ				П	T			П						П				П	69	8
2H2	Food and beverages industry		16				1	1					1		1					1	1				T			1	11		1	1	П							1	1	1		16	17
2H3	Other industrial processes (please specify in the IIR)		1	П		7	7	7				7	1	1						1			7	7	T				11		1				1			1		7	1	T			
21	Wood processing			П		7	7	1				寸	1	1	1		Ħ		1	1	1	Ħ	7	1	1	1	11		\dagger	7	1	1		1		\sqcap	7		11	1	1	1			
2J	Production of POPs			П		7	7	1			П	7	1	1	1		П	1	1	1		П	7	1	T	1	\sqcap	1	\sqcap	1	1			1		П	1	1	M	1	1		П		
2K	Consumption of POPs and heavy metals	7	1	П		7	7	1				7	1			1				2	:3	П	7	7		1			\sqcap	1	1	1				П	十	1	11	1	1	89		113	4
2L	Other production, consumption, storage, transportation or			П		7	7	7				寸	1	1			Ħ		1	1			7		1	1		1	\sqcap		1			1			7	1	11	7	1	1			
3B1a	Manure management - Dairy cattle		16	П		7	22	1					1				П					П	7		T	1			П											1		T		38	13

										(%	Со	nt	rik	out	tio	ns	s t	o p	00	llu	tar	nt t	ota	als	f	or	ke	ус	ate	ego	ori	es	(c	un	าน	lat	iv	е 8	30°	%)						
NFR Code	NFR Categooy		, NM		SO		NH ₃		M _{2.5}	PM ₁		TSP		вс	C		Pi		Cd		Hg		As	Cr		Cu		Ni	Se		Zn	P	DD/ CDF	benz) pyr	o(a ene fl	enzo() uoran	b bei) orant	k Ind (1,	deno ,2,3- cd)	101		HCE		PCBs	Sum of KC % Contributions	Rank
		LA T	A LA	TA	LA 1	A L	A T	LA	TA	LA 1	A L	A TA	LA	TA	LA	TA	LA	TA	LA 1	A L	A T	A LA	TA	LA 1	A L	A T	A LA	TA	LA .	TA I	LA TA	A LA	TA	LA	TA L	A TA	A LA	TA	A LA	TA	LA	TA	LA .	ΓAL	A TA		—
3B1b	Manure management - Non-dairy cattle	11	9			8	:																																							16	16
3B2	Manure management - Sheep																																														
3B3	Manure management - Swine					3	5				1	0																															Ì			45	12
3B4a	Manure management - Buffalo				T	Ť	Ť				T									T	T				Ť	Ť	1										T	T	T					T			
3B4d	Manure management - Goats			h	1	Ť	T	T	Ħ		Ť	Ť	T		П			1		T	Ť		Ħ		Ť	\dagger			h			╁				T	T	T	T				1	Ť	T		
3B4e	Manure management - Horses				T	t	T	T					T								T				Ť			H	Ħ		+													T			
3B4f	Manure management - Mules and asses			Ħ	T	Ť	T	T			Ť	Ť	T		H					T	T	T			Ť	\dagger			Ħ							T	T	T	T	T			T	T			
3B4gi	Manure mangement - Laying hens					6					7	7													T						İ													T		13	19
3B4gii	Manure mangement - Broilers				T		T								П					T	Ť																							T			
3B4giii	Manure mangement - Turkeys																																														
3B4giv	Manure management - Other poultry																																														
3B4h	Manure management - Other animals (please specify in IIR)																																														
3Da1	Inorganic N-fertilizers (includes also urea application)	79			ľ	1	0	Τ		П										T	T									7					\Box											90	7
3Da2a	Animal manure applied to soils																																														
3Da2b	Sewage sludge applied to soils																																														
3Da2c	Other organic fertilisers applied to soils																																														
3Da3	Urine and dung deposited by grazing animals					1						1							1											1																	
3Da4	Crop residues applied to soils																																														
3Db	Indirect emissions from managed soils																																														
	Farm-level agricultural operations including storage,				T			6	П	40	1	9							T				Π	T	T										T									T		65	9

										%	6 C	or	tril	but	io	ns	to	рс	llu	tan	t t	ota	ls '	for	ke	у са	teg	or	ies	(CI	um	ula	ativ	/e 8	80%	%)					
NFR Code	NFR Categooy			NOC			NH ₃			PM ₁₀			вс	cc		Pb		Cd	Hg	А		Cr	С		Ni	Se	Zn	P	CDD/ CDF	benzo	ne flu) fluora	(k Inc (1,	leno 2,3- d)	Total 1	- HC		PCBs	Sum of KC % Contributions	Rank
		LA TA	A LA	TA.	LA 1	ΓAL	A TA	LA	TA	A TA	LA	TA	LA TA	LA	TA	LA T	A LA	TA	LA T	A LA	TA I	LA TA	LA	TA L	A TA	LA TA	LA 1	ΓA L	A TA	LA 1	ΓA LA	TA	LA 1	A LA	TA	LA TA	LA	TA L	A TA		
	Off-farm storage, handling and transport of bulk agricultural	Ш	Ĺ	Ц					Ц		Ш			Ц				Ш									Ц		Ш	Ц											
3De	Cultivated crops		7				ľ				[ľ															ľ			ľ									7	21
3Df	Use of pesticides																																								
3F	Field burning of agricultural residues												55																	96	99		99	98						447	2
31	Agriculture other (please specify in the IIR)	T	1	П	1	1	1		\sqcap	1	11	7		11		1	1		1		7			7			11				1			1			П	7	1		
	Biological treatment of waste - Solid waste disposal on land		1		1	1	1			1	11	7	1	1		1	1	r		T	7			1			11	1		H	1	П	7	1				1	1		
5B1	Biological treatment of waste - Composting	11	1	T	1	1	1		\Box	1	11	7	1	11	1	1	1	M	1	T	7			1			11			H	1	H	7	1		1	H	1	1		
5D2	Biological treatment of waste - Anaerobic digestion at biogas	11	1	Ħ	1	1	1			1	11	7		11	1		1		1	1	7			1	1		11	1	T	H			7			1		1			
	Municipal waste incineration	††	1	11	1	1	1			1	11	7		11	1	1	1	H	╈		7			7	1		*	1	1		1		1	+		1		+	1		
5C1bi	Industrial waste incineration	Ħ	1	11	1	1	1			†	11	7	1	11	7	1	1	H	+		7			7	1		**		1		1		1	1		1		+	1		
5C1bii	Hazardous waste incineration	11	1	11	7	1	1			1	11	7	1	11	7						7			7	1		11		1		1		1			1		+	1		
5C1biii	Clinical waste incineration	11	1	11	7	1	1			1	11	7	1	11	7						7			7	1		11		1		1		1			1		+	1		
5C1biv	Sewage sludge incineration	Ħ	1	11	1	1	1			1	11	7	1	11	7	+	1	H	+		7			7	1		11	1	1		1		7	1		1		+	1		
5C1bv	Cremation	11	1	11		1				1	11	7	1	1	7	-					7			7	1		11		1		1		1	1		1		+	1		
5C1bvi	Other waste incineration (please	††	+	H	\dagger	\dagger	t		\forall	\top	H	Ť	\top	H	+	T	t	H	\top	H	T	\top			T		H	\dagger	T	H	T	H	T	t			П		1		
5C2	specify in the IIR) Open burning of waste	H	\dagger	H	\dagger	\dagger	t	H	\dashv	\top	H	T	\top	T	+	1	t	H	\top	H	T	1	\Box		T		H	\dagger		H	+			T			Н		1		
	Domestic wastewater handling	$\dag \dag$	\top	${\dagger \dagger}$	1	T	\dagger		\dashv	\top	H	T	\top	$\dagger \dagger$	1	+	t	H	\top	\Box	T	+	H		\top		H	T	+	\forall	\top		_	+			Н		+		
	Industrial wastewater handling	$\dag \dag$	+	${\dagger \dagger}$	1	\dagger	t		\dashv	\top	H	Ť	\top	$\dagger \dagger$	1		t	H	\top	\Box	T	+		+	+	\vdash	$\dag \dag$	+	+	\forall	†	Н	\dashv	+		+	Н	-			
5D3	Other wastewater handling	H	t	${\dagger \dagger}$	\dagger	\dagger	t	H	\dashv	+	H	Ť	\top	${\mathsf H}$	t		t	H	\top	\Box	Ť		H		T		H	t	+	\forall	†	Н	1	\top			H				
5E	Other waste (please specify in	H	T	${\sf H}$		t	+		H	+	H	T	\top	${\dagger\dagger}$	t		t	H	\top	T	Ť				\top		H	t	+	H	\top		-	+			Н				
	IIR) Other (included in national total for entire territory) (please specify		1	$\dagger \dagger$		T	t		\dashv		$\dagger \dagger$	Ť	-	H	t	T	t		t	Ħ	Ť				\top		H	\dagger	Ħ	H	\dagger	H	\dagger	+			П	\exists			

2.3. Results of the level and trend assessment (approach 1)

As the analysis was made for all pollutants reported to the UNECE and as these pollutants differ in their way of formation, most of the identified categories are key categories for more than one pollutant - in total 36 key sources were identified.

Table 11. Key Categories for NOx emissions for the year 2022

Level Assess	ment				
NFR Category Code	NFR Category	Pollutant	Year (2022) Estim. [kt] Ex,t	Level Assessmen t Lx,t	Cumulati ve Total of Lx,t
1A1a	Public electricity and heat production	NOx	67.7757	36.65%	36.65%
1A3biii	Road transport: Heavy duty vehicles and buses	NOx	35.9006	19.41%	56.1%
1A3bi	Road transport: Passenger cars	NOx	31.6840	17.13%	73.2%
1A3bii	Road transport: Light duty vehicles	NOx	8.1360	4.40%	77.6%
1A4bi	Residential: Stationary	NOx	6.1031	3.30%	80.9%

Trend Assess	sment						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessment Lx,t	% Contri bution to the trend	Cumulat ive Total of Lx,t
1A1a	Public electricity and heat production	NOx	97.69	73.07	0.169	40.12%	40.1%
1A3bi	Road transport: Passenger cars	NOx	19.80	29.56	0.064	15.15%	55.3%
1A3bii	Road transport: Light duty vehicles	NOx	1.01	7.09	0.039	9.23%	64.5%
1A3biii	Road transport: Heavy duty vehicles and buses	NOx	28.50	29.77	0.039	9.22%	73.7%
3Da1	Inorganic N-fertilizers (includes also urea application)	NOx	0.87	8.53	0.028	6.75%	80.5%

Table 12. Key Categories for NMVOC emissions for the year 2022

Level Assess	ment				
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessm ent Lx,t	Cumulati- ve Total of Lx,t
1A4bi	Residential: Stationary	NMVOC	38.5498	28.73%	28.73%
1B1a	Fugitive emission from solid fuels: Coal mining and handling	NMVOC	27.9336	20.82%	49.5%
2D3a	Domestic solvent use including fungicides	NMVOC	7.9694	5.94%	55.5%
1B2av	Distribution of oil products	NMVOC	6.8560	5.11%	60.6%
3B1a	Manure management - Dairy cattle	NMVOC	6.7120	5.00%	65.6%
2H2	Food and beverages industry	NMVOC	6.2828	4.68%	70.3%
1A3bi	Road transport: Passenger cars	NMVOC	5.6037	4.18%	74.5%
2D3h	Printing	NMVOC	4.3168	3.22%	77.7%
3B1b	Manure management - Non-dairy cattle	NMVOC	3.7891	2.82%	80.5%

Trend Assessr							
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assessm ent Lx,t	% Contrib ution to the trend	Cumul ative Total of Lx,t
1A3bi	Road transport: Passenger cars	NMV OC	30.96	5.07	0.084	28.55%	28.5%
1A4bi	Residential: Stationary	NMV OC	38.35	39.13	0.061	20.60%	49.2%
1B1a	Fugitive emission from solid fuels: Coal mining and handling	NMV OC	35.02	31.73	0.018	5.94%	55.1%
1B2av	Distribution of oil products	NMV OC	5.00	5.41	0.018	5.93%	61.0%
3B1a	Manure management - Dairy cattle	NMV OC	14.25	7.48	0.017	5.82%	66.8%
2H2	Food and beverages industry	NMV OC	13.34	7.04	0.016	5.45%	72.3%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	NMV OC	0.66	1.38	0.010	3.33%	75.6%
2D3d	Coating applications	NMV OC	3.05	0.80	0.008	2.70%	78.3%
2D3a	Domestic solvent use including fungicides	NMV OC	9.39	8.25	0.007	2.44%	80.8%

Table 13. Key Categories for SOx emissions for the year 2022

Level Assessme	Level Assessment												
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assess- ment Lx,t	Cumulati ve Total of Lx,t								
1A1a	Public electricity and heat production	SOx	347.3261	92.03%	92.03%								

NFR	NFR Category	Pollu	Base	Latest Year	Trend	%	Cumu
Category		tant	Year	(2022)	Assess	Contribut	ative
Code			(1990)	Estimate	ment	ion to the	Total
			Estimat	[kt] Ex,t	Lx,t	trend	of Lx,t
			e [kt]	[],		0.0110	0.1 =2.1,0
			Ex,0				
1A1a	Public electricity and heat production	SOx	519.09	381.33	0.013	25.64%	25.6%
1A4bi	Residential: Stationary	SOx	17.24	10.08	0.010	18.90%	44.5%
1A2e	Stationary combustion in manufacturing	SOx	3.91	0.44	0.004	7.97%	52.5%
	industries and construction: Food						
	processing, beverages and tobacco						
1A3bi	Road transport: Passenger cars	SOx	1.20	2.59	0.004	7.41%	59.9%
1A3biii	Road transport: Heavy duty vehicles and buses	SOx	0.49	1.89	0.004	7.02%	66.9%
1A1c	Manufacture of solid fuels and other energy industries	SOx	3.28	0.65	0.003	6.70%	73.6%
1A4ai	Commercial/institution al: Stationary	SOx	4.24	2.12	0.003	5.24%	78.9%
1A2b	Stationary combustion in manufacturing industries and	SOx	1.61	0.65	0.001	2.92%	81.8%
	construction: Non- ferrous metals						

Table 14. Key Categories for NH3 emissions for the year 2022

	1	1			
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessmen t Lx,t	Cumula tive Total of Lx,t
3B3	Manure management - Swine	NH3	23.4184	32.98%	32.98%
3B1a	Manure management - Dairy cattle	NH3	15.6415	22.02%	55.0%
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	7.5997	10.70%	65.7%
3B1b	Manure management - Non-dairy cattle	NH3	6.3847	8.99%	74.7%
3B4gi	Manure mangement - Laying hens	NH3	4.5158	6.36%	81.1%

Trend Assess	sment						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contrib ution to the trend	Cumul ative Total of Lx,t
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	1.09	10.67	0.055	34.64%	34.6%
3B1a	Manure management - Dairy cattle	NH3	33.20	17.43	0.024	15.21%	49.9%
3B3	Manure management - Swine	NH3	46.12	26.34	0.020	12.76%	62.6%
1A4bi	Residential: Stationary	NH3	3.43	3.98	0.018	11.17%	73.8%
5D1	Domestic wastewater handling	NH3	8.63	3.47	0.013	7.99%	81.8%

Table 15. Key Categories for PM 2.5 emissions for the year 2022

Level Assessme	Level Assessment											
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessmen t Lx,t	Cumulati ve Total of Lx,t							
1A4bi	Residential: Stationary	PM2.5	46.4399	77.10%	77.10%							
1A3bi	Road transport: Passenger cars	PM2.5	2.2848	3.79%	80.9%							

Trend Assessm	ent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contrib ution to the trend	Cumulat ive Total of Lx,t
1A1c	Manufacture of solid fuels and other energy industries	PM2. 5	1.98	0.39	0.038	16.99%	17.0%
1A3bi	Road transport: Passenger cars	PM2. 5	0.40	1.88	0.034	15.05%	32.0%
1A4bi	Residential: Stationary	PM2. 5	43.60	46.17	0.029	12.86%	44.9%
1A3bvi	Road transport: Automobile tyre and brake wear	PM2. 5	0.16	0.78	0.019	8.36%	53.3%
2D3i	Other solvent use (please specify in the IIR)	PM2. 5	0.62	1.48	0.016	7.25%	60.5%
1A1a	Public electricity and heat production	PM2. 5	1.45	1.03	0.010	4.57%	65.1%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	PM2. 5	0.48	0.65	0.009	4.15%	69.2%
1A3bii	Road transport: Light duty vehicles	PM2. 5	0.19	0.53	0.008	3.43%	72.7%
1A3bvii	Road transport: Automobile road abrasion	PM2. 5	0.09	0.39	0.007	2.92%	75.6%
1A4ai	Commercial/institution al: Stationary	PM2. 5	0.51	0.29	0.006	2.84%	78.4%
2A2	Lime production	PM2. 5	0.45	0.12	0.006	2.81%	81.2%

Table 16. Key Categories for PM10 emissions for the year 2022

Level Assessme	Level Assessment											
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessm ent Lx,t	Cumula- tive Total of Lx,t							
1A4bi	Residential: Stationary	PM10	47.6684	60.88%	60.88%							
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	PM10	5.4425	6.95%	67.8%							

1A3bi	Road transport: Passenge			PM10	3.2720	4.18%	72.0%
1A3bvi	Road transport: Automo brake wear			PM10	2.3757	3.03%	75.0%
1A1a	Public electricity and he	•		PM10	2.2895	2.92%	78.0%
2A5a	Quarrying and mining of than coal	f mineral	s other	PM10	1.8884	2.41%	80.4%
Trend Assessn	nent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessm ent Lx,t	% Contrib ution to the trend	Cumulati ve Total of Lx,t
1A1c	Manufacture of solid fuels and other energy industries	PM10	2.84	0.56	0.040	15.18%	15.2%
1A3bi	Road transport: Passenger cars	PM10	0.47	2.45	0.038	14.50%	29.7%
1A3bvi	Road transport: Automobile tyre and brake wear	PM10	0.30	1.43	0.028	10.80%	40.5%
2A2	Lime production	PM10	2.23	0.62	0.023	8.65%	49.1%
1A1a	Public electricity and heat production	PM10	3.31	2.37	0.017	6.57%	55.7%
2D3i	Other solvent use (please specify in the IIR)	PM10	0.73	1.65	0.013	4.98%	60.7%
1A3bvii	Road transport: Automobile road abrasion	PM10	0.17	0.72	0.009	3.50%	64.2%
1A3bii	Road transport: Light duty vehicles	PM10	0.20	0.66	0.009	3.38%	67.6%
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	PM10	5.65	5.47	0.008	3.11%	70.7%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	PM10	0.52	0.66	0.007	2.64%	73.3%
1B1a	Fugitive emission from solid fuels: Coal mining and handling	PM10	1.84	1.67	0.007	2.61%	75.9%
2A5a	Quarrying and mining of minerals other than coal	PM10	1.32	1.13	0.006	2.48%	78.4%

Republic of Serbia Informative inventory report to LRTAP convention for 2024

- Swine	3B3	Manure management	PM10	0.76	0.46	0.005	2.10%	80.5%
---------	-----	-------------------	------	------	------	-------	-------	-------

Table 17. Key Categories for TSP emissions for the year 2022

NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessm ent Lx,t	Cumulati ve Total of Lx,t
1A4bi	Residential: Stationary	TSP	50.2792	53.29%	53.29%
2D3b	Road paving with asphalt	TSP	7.3128	7.75%	61.0%
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	TSP	5.4425	5.77%	66.8%
2A5a	Quarrying and mining of minerals other than coal	TSP	3.8522	4.08%	70.9%
1A1a	Public electricity and heat production	TSP	3.3300	3.53%	74.4%
1B1a	Fugitive emission from solid fuels: Coal mining and handling	TSP	3.1076	3.29%	77.7%
1A3bvi	Road transport: Automobile tyre and brake wear	TSP	2.9655	3.14%	80.9%

NFR	NFR Category	Pollu	Base	Latest	Trend	%	Cumulat
Category		tant	Year	Year	Assessm	Contribut	ive
Code			(1990)	(2022)	ent Lx,t	ion to the	Total of
			Estima	Estimat		trend	Lx,t
			te [kt]	e [kt]			
			Ex,0	Ex,t			
2B10a	Chemical industry: Other (please specify in the IIR)	TSP	55.93	0.03	0.211	42.78%	42.8%
1A4bi	Residential: Stationary	TSP	47.39	50.06	0.139	28.25%	71.0%
2D3b	Road paving with asphalt	TSP	5.92	7.31	0.024	4.85%	75.9%
1A3bvi	Road transport: Automobile tyre and brake wear	TSP	0.39	1.92	0.017	3.51%	79.4%
2A5a	Quarrying and mining of minerals other than coal	TSP	2.70	2.31	0.014	2.88%	82.3%

Table 18. Key Categories for BC emissions for the year 2022

NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t
1A4bi	Residential: Stationary	BC	4.5646	78.91%	78.91%
1A3bvi	Road transport: Automobile tyre and brake wear	ВС	0.3714	6.42%	85.3%

Trend Asse	essment						
NFR Categor y Code	NFR Category	Pollutan t	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessmen t Lx,t	% Contributio n to the trend	Cumulativ e Total of Lx,t
1A4bi	Residential: Stationary	BC	4.09	4.47	0.190	43.19%	43.2%
1A3bvi	Road transport: Automobile tyre and brake wear	BC	0.00	0.08	0.085	19.25%	62.4%
1A2e	Stationary combustion in manufacturin g industries and construction: Food processing, beverages and tobacco	ВС	0.03	0.18	0.058	13.23%	75.7%
1A2gvii	Mobile Combustion in manufacturin g industries and construction: (please specify in the IIR)	ВС	0.00	0.14	0.041	9.37%	85.0%

Table 19. Key Categories for CO emissions for the year 2022

Level Assessme	nt				
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [kt] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t
1A4bi	Residential: Stationary	СО	264.7833	72.20%	72.20%
1A3bi	Road transport: Passenger cars	СО	27.5084	7.50%	79.7%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	СО	20.4379	5.57%	85.3%

Trend Asse	essment						
NFR Categor y Code	NFR Category	Pollutan t	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessmen t Lx,t	% Contributio n to the trend	Cumulativ e Total of Lx,t
1A3bi	Road transport: Passenger cars	СО	192.51	27.82	0.210	48.69%	48.7%
1A4bi	Residential: Stationary	СО	281.12	275.34	0.127	29.40%	78.1%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	СО	0.06	18.27	0.039	9.12%	87.2%

Table 20. Key Categories for Pb emissions for the year 2022

NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t
2C1	Iron and steel production	Pb	21.5540	51.15%	51.15%
1A3bi	Road transport: Passenger cars	Pb	8.1093	19.24%	70.4%
1A1a	Public electricity and heat production	Pb	3.8674	9.18%	79.6%
1A3biii	Road transport: Heavy duty vehicles and buses	Pb	2.3848	5.66%	85.2%

Trend Asse	ssment						
NFR	NFR	Pollutan	Base	Latest	Trend	%	Cumulativ
Categor	Category	t	Year	Year	Assessmen	Contributio	e Total of
y Code			(1990)	(2022)	t Lx,t	n to the	Lx,t
			Estimat	Estimat		trend	
			e [kt]	e [kt]			
			Ex,0	Ex,t			
1A3bi	Road	Pb	345.84	1.05	0.083	49.72%	49.7%
	transport:						
	Passenger						
	cars						
2C1	Iron and steel	Pb	4.19	21.00	0.057	33.76%	83.5%
	production						

Table 21. Key Categories for Cd emissions for the year 2022

Level Assessme	ent				
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t
1A4bi	Residential: Stationary	Cd	0.7854	36.06%	36.06%
1A1a	Public electricity and heat production	Cd	0.4681	21.49%	57.6%
2C7a	Copper production	Cd	0.2806	12.88%	70.4%
2D3i	Other solvent use (please specify in the IIR)	Cd	0.2486	11.41%	81.9%

Trend Asse	ssment						
NFR Category Code	NFR Category	Pollutant	Base Year (1990) Estimate [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assessment Lx,t	% Contribution to the trend	Cumulative Total of Lx,t
2C7a	Copper production	Cd	2.27	0.94	0.239	47.91%	47.9%
1A4bi	Residential: Stationary	Cd	0.66	0.75	0.106	21.21%	69.1%
2D3i	Other solvent use (please specify in the IIR)	Cd	0.08	0.23	0.052	10.30%	79.4%
2C1	Iron and steel production	Cd	0.07	0.16	0.033	6.66%	86.1%

Table 22. Key Categories for Hg emissions for the year 2022

NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessm ent Lx,t	Cumulati ve Total of Lx,t
1A1a	Public electricity and heat production	Hg	0.7478	54.67%	54.67%
2C1	Iron and steel production	Hg	0.1669	12.20%	66.9%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	Hg	0.1222	8.93%	75.8%
1A4bi	Residential: Stationary	Hg	0.0702	5.13%	80.9%

Trend Assessme	ent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contribut ion to the trend	Cumul ative Total of Lx,t
1A1c	Manufacture of solid fuels and other energy industries	Hg	1.08	0.21	0.173	47.20%	47.2%
1A1a	Public electricity and heat production	Hg	1.11	0.82	0.072	19.77%	67.0%
2C1	Iron and steel production	Hg	0.00	0.17	0.060	16.37%	83.3%

Table 23. Key Categories for As emissions for the year 2022

NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t
1A1a	Public electricity and heat production	As	3.6828	75.93%	75.93%
2C1	Iron and steel production	As	0.6998	14.43%	90.4%

Trend Asse	essment						
NFR Categor y Code	NFR Category	Pollutan t	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessmen t Lx,t	% Contributio n to the trend	Cumulativ e Total of Lx,t
2C7a	Copper production	As	1.06	0.45	0.067	32.85%	32.8%
2C1	Iron and steel production	As	0.42	0.61	0.056	27.53%	60.4%
1A1a	Public electricity and heat production	As	5.48	4.04	0.033	16.14%	76.5%
1A1c	Manufactur e of solid fuels and other energy industries	As	0.40	0.08	0.029	14.29%	90.8%

Table 24 Key Categories for Cr emissions for the year 2022

Level Assessment

NFR Category C	Code NFR Cate	egory	Poli	utant	Year (2022) Estimate [t] Ex,t		Level Assessmen	Cumulativ e Total of	
					Ex,	t,	t Lx,t	Lx,t	
2C1	Iron and steel pro	duction	Cr		5.0127		33.53%	33.53%	
1A3bi	Road transport: P	Road transport: Passenger car			3.4037		22.77%	56.3%	
1A1a	Public electricity production	Public electricity and heat production			2.3423		15.67%	72.0%	
1A4bi	Residential: Station	onary	Cr		1.4367		9.61%	81.6%	
Trend Assessme	Trend Assessment								
NFR	NFR Category	Pollu	Base	Lates	st Year	Tren	%	Cumulat	
Category		tant	Year	(2022)		d	Contribut	ive	
Code			(1990)	Esti	Estimate		ion to the	Total of	
			Estima	[kt]	Ex,t	ssme	trend	Lx,t	
			te [kt]			nt			
			Ex,0			Lx,t			
2C7a	Copper production	Cr	3.17	1.28		0.319	26.63%	26.6%	
1A3bi	Road transport: Passenger cars	Cr	0.09	0.41		0.283	23.63%	50.3%	
1A1a	Public electricity and heat production	Cr	3.49	2.57		0.184	15.37%	65.6%	
2C1	Iron and steel production	Cr	2.41	4.59		0.165	13.76%	79.4%	
1A3bii	Road transport: Light duty vehicles	Cr	0.01	0.11		0.072	5.97%	85.4%	

Table 25. Key Categories for Cu emissions for the year 2022

Level Assessment										
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessme nt Lx,t	Cumulati ve Total of Lx,t					
1A3bi	Road transport: Passenger cars	Cu	8.9579	43.38%	43.38%					
1A3biii	Road transport: Heavy duty vehicles and buses	Cu	4.0806	19.76%	63.1%					
1A3bii	Road transport: Light duty vehicles	Cu	2.7124	13.13%	76.3%					
2C1	Iron and steel production	Cu	2.0489	9.92%	86.2%					

Trend Assessme	ent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contribut ion to the trend	Cumul ative Total of Lx,t
2C7a	Copper production	Cu	8.61	3.75	0.655	40.31%	40.3%
1A3bi	Road transport: Passenger cars	Cu	1.66	8.41	0.434	26.69%	67.0%
1A3bii	Road transport: Light duty vehicles	Cu	0.20	2.37	0.157	9.66%	76.7%
2C1	Iron and steel production	Cu	0.06	2.17	0.127	7.81%	84.5%

Table 26. Key Categories for Ni emissions for the year 2022

NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessmen t Lx,t	Cumulati ve Total of Lx,t
2C1	Iron and steel production	Ni	6.3122	40.96%	40.96%
1A1a	Public electricity and heat production	Ni	3.9704	25.76%	66.7%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	Ni	2.1013	13.64%	80.4%

Trend Assessment									
NFR Category Code	NFR Category	Poll uta nt	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Tren d Asse ssme nt Lx,t	% Contribut ion to the trend	Cumulat ive Total of Lx,t		
2C1	Iron and steel production	Ni	0.14	6.68	0.366	40.00%	40.0%		
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	Ni	4.85	0.97	0.138	15.02%	55.0%		
2C7a	Copper production	Ni	2.87	1.16	0.135	14.76%	69.8%		
1A1a	Public electricity and heat production	Ni	6.49	3.67	0.115	12.59%	82.4%		

Table 27. Key Categories for Se emissions for the year 2022

Level Assessme	Level Assessment										
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessme nt Lx,t	Cumulati ve Total of Lx,t						
1A1a	Public electricity and heat production	Se	11.4972	94.61%	94.61%						

Trend Assessme	ent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contribut ion to the trend	Cumul ative Total of Lx,t
1A1a	Public electricity and heat production	Se	17.13	12.66	0.013	32.93%	32.9%
1A3bi	Road transport: Passenger cars	Se	0.00	0.01	0.007	18.33%	51.3%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	Se	0.19	0.30	0.006	13.65%	64.9%
1A1c	Manufacture of solid fuels and other energy industries	Se	0.10	0.02	0.004	9.25%	74.2%
2C1	Iron and steel production	Se	0.00	0.04	0.002	5.08%	79.2%
2A3	Glass production	Se	0.11	0.05	0.002	4.69%	83.9%

Table 28. Key Categories for Zn emissions for the year 2022

NFR	NFR Category	Pollutant	Year (2022)	Level	Cumulative
Category			Estimate [t]	Assessment	Total of Lx,t
Code			Ex,t	Lx,t	
1A4bi	Residential: Stationary	Zn	31.8156	48.68%	48.68%
2C1	Iron and steel production	Zn	15.5623	23.81%	72.5%
1A3bi	Road transport: Passenger cars	Zn	3.9327	6.02%	78.5%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	Zn	3.6877	5.64%	84.1%

Trend Ass	essment						
NFR Categor y Code	NFR Category	Pollutan t	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessmen t Lx,t	% Contributio n to the trend	Cumulativ e Total of Lx,t
2C1	Iron and steel production	Zn	4.35	15.27	0.198	32.65%	32.7%
1A4bi	Residential: Stationary	Zn	29.14	31.36	0.128	21.19%	53.8%
1A1a	Public electricity and heat production	Zn	4.37	2.83	0.058	9.52%	63.4%
1A2e	Stationary combustion in manufacturin g industries and construction: Food processing, beverages and tobacco	Zn	0.87	2.24	0.051	8.42%	71.8%
1A1c	Manufacture of solid fuels and other energy industries	Zn	1.66	0.33	0.042	6.92%	78.7%
1A3bi	Road transport: Passenger cars	Zn	2.04	3.68	0.025	4.19%	82.9%

Table 29. Key Categories for PCDD/PCDF emissions for the year 2022 $\,$

Level Assessn	Level Assessment									
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [g I- TEQ] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t					
1A4bi	Residential: Stationary	PCDD/PCDF	52.2432	72.59%	72.59%					
2C1	Iron and steel production	PCDD/PCDF	10.2664	14.26%	86.8%					

Trend Asse	essment						
NFR Categor y Code	NFR Category	Pollutant	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimat e [kt] Ex,t	Trend Assessmen t Lx,t	% Contributio n to the trend	Cumulativ e Total of Lx,t
2C1	Iron and steel production	PCDD/PCD F	0.73	9.15	0.135	38.78%	38.8%
1B1b	Fugitive emission from solid fuels: Solid fuel transformatio n	PCDD/PCD F	6.32	2.05	0.077	22.11%	60.9%
1A4bi	Residential: Stationary	PCDD/PCD F	54.00	53.78	0.041	11.86%	72.8%
1A1a	Public electricity and heat production	PCDD/PCD F	3.86	2.85	0.019	5.40%	78.2%
1A1c	Manufacture of solid fuels and other energy industries	PCDD/PCD F	0.94	0.19	0.013	3.70%	81.9%

Table 30. Key Categories for Benzo a pyren emissions for the year 2022

Level Assessment										
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessment Lx,t	Cumulati ve Total of Lx,t					
1A4bi	Residential: Stationary	benzo a pyren	8.4961	94.54%	94.54%					

Trend Assessm	ent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contribut ion to the trend	Cumul ative Total of Lx,t
1A4bi	Residential: Stationary	benzo a pyren	10.19	9.27	0.035	39.73%	39.7%
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	benzo a pyren	0.34	0.11	0.019	21.47%	61.2%
1A4ai	Commercial/institutio nal: Stationary	benzo a pyren	0.21	0.10	0.010	11.39%	72.6%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	benzo a pyren	0.21	0.06	0.007	8.22%	80.8%

Table 31. Key Categories for Benzo b flouranthen emissions for the year 2022

Level Assessme	nt									
NFR Category Code	NFR Category	• ,		Estimate [t] Asse		Asses	evel ssment x,t		mulativ Total of Lx,t	
1A4bi	Residential: Stationary		benzo b fluoranther	1	8.4472		90.26	%	90	.26%
Trend Assessme	ent									
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estimat e [kt] Ex,0	ı	atest Year (2022) Estimate [kt] Ex,t	A	rend ssess nent Lx,t	% Contri tion t the	0	Cumul ative Total of Lx,t
1A4bi	Residential: Stationary	benzo b fluora nthen	11.56	9.	74	0.	022	32.81%		32.8%
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	benzo b fluora nthen	0.42	0.	14	0.	017	25.98%	ı	58.8%
1A4ai	Commercial/institutio nal: Stationary	benzo b fluora nthen	0.28	0.	14	0.	009	13.81%	1	72.6%

1A3bi	Road transport: Passenger cars	benzo	0.01	0.08	0.006	9.11%	81.7%
	i assenger cars	fluora					
		nthen					

Table 32. Key Categories for Benzo k flouranthen emissions for the year 2022

Level Assessment					
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessm ent Lx,t	Cumulativ e Total of Lx,t
1A4bi	Residential: Stationary	benzo k fluoranten	3.2245	87.92%	87.92%

Trend Assessm	ent						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990)	Latest Year (2022) Estimate	Tren d Asse	% Contribut ion to the	Cumul ative Total
			Estimat e [kt] Ex,0	[kt] Ex,t	ssme nt Lx,t	trend	of Lx,t
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	benzo k fluora nten	0.21	0.07	0.022	25.71%	25.7%
1A4bi	Residential: Stationary	benzo k fluora nten	4.47	3.74	0.018	21.47%	47.2%
1A3bi	Road transport: Passenger cars	benzo k fluora nten	0.00	0.06	0.012	14.69%	61.9%
1A4ai	Commercial/institutio nal: Stationary	benzo k fluora nten	0.11	0.05	0.009	10.97%	72.8%
1A3biii	Road transport: Heavy duty vehicles and buses	benzo k fluora nten	0.02	0.04	0.007	7.97%	80.8%

Table 33. Key Categories for Indeno emissions for the year 2022

Level Assessment										
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessm ent Lx,t	Cumulative Total of Lx,t					
1A4bi	Residential: Stationary	Indeno 1,2,3 pyren	4.8485	93.71%	93.71%					

Tren	d Assessment						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contrib ution to the trend	Cumul ative Total of Lx,t
1A4bi	Residential: Stationary	Inden o 1,2,3 pyren	5.52	5.18	0.024	31.14%	31.1%
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	Inden o 1,2,3 pyren	0.15	0.05	0.017	21.68%	52.8%
1A3bi	Road transport: Passenger cars	Inden o 1,2,3 pyren	0.01	0.06	0.011	13.87%	66.7%
1A4ai	Commercial/institution al: Stationary	Inden o 1,2,3 pyren	0.09	0.04	0.008	10.87%	77.6%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	Inden o 1,2,3 pyren	0.09	0.03	0.006	8.39%	85.9%

Table 34. Key Categories for Total $1-4\ PAH\ emissions$ for the year 2022

Level Assessn	Level Assessment										
NFR Category Code	NFR Category	Pollutant	Year (2022) Estimate [t] Ex,t	Level Assessment Lx,t	Cumulative Total of Lx,t						
1A4bi	Residential: Stationary	Total 1-4 PAH	25.0164	82.46%	82.46%						

Trend Assessn	nent						
NFR Category Code	NFR Category	Pollutant	Base Year (1990) Estima te [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Trend Assess ment Lx,t	% Contribut ion to the trend	Cumul ative Total of Lx,t
1A4bi	Residential: Stationary	Total 1-4 PAH	31.73	27.92	0.046	40.26%	40.3%
2C1	Iron and steel production	Total 1-4 PAH	5.79	3.09	0.026	22.50%	62.8%
1B1b	Fugitive emission from solid fuels: Solid fuel	Total 1-4 PAH	1.12	0.36	0.015	13.34%	76.1%

	transformation						
1A4ai	Commercial/instit	Total 1-4	0.69	0.34	0.008	6.72%	82.8%
	utional: Stationary	PAH					

Table 35. Key Categories for HCB emissions for the year 2022

Level Assess	ment						
NFR Catego Code	ory NFR Ca	tegory Po		Year (2022) Estimate [kg] Ex,t	Level Assessmen	t Lx,t Cumula	itive Total of Lx,t
1A1a	Public electrici heat product	ty and	CB 1	1.7120	78.70%	78.70%	
1A4bi	Residen Stationa		CB C).3023	13.90%	92.6%	
Trend Asses	sment						
NFR	NFR	Pollutan	Base	Latest	Trend	%	Cumulativ
Categor	Category	t	Year	Year	Assessmen	Contributio	e Total of

Trend Asse	ssment						
NFR	NFR	Pollutan	Base	Latest	Trend	%	Cumulativ
Categor	Category	t	Year	Year	Assessmen	Contributio	e Total of
y Code			(1990)	(2022)	t Lx,t	n to the	Lx,t
			Estimat	Estimat		trend	
			e [kt]	e [kt]			
			Ex,0	Ex,t			
1A1a	Public electricity and heat production	НСВ	2.56	1.88	0.080	49.35%	49.4%
1A4bi	Residential: Stationary	HCB	0.26	0.29	0.038	23.21%	72.6%
2C1	Iron and steel production	НСВ	0.00	0.05	0.018	10.81%	83.4%

Table 36. Key Categories for PCB emissions for the year 2022

Level Assess	ment						
NFR Categ Code	gory NFR Category	, ,	Pollutant	Year (2022) Estimate [kg] Ex,t	Leve Assessn Lx,t	nent Tot	nulative al of Lx,t
2K	"Consumption of POPs and heavy metals					2K	
Trend Asses	sment						
NFR Category Code	NFR Category	Pollu tant	Base Year (1990) Estimat e [kt] Ex,0	Latest Year (2022) Estimate [kt] Ex,t	Tren d Asse ssme nt Lx,t	% Contribut ion to the trend	Cumul ative Total of Lx,t
2C7a	Copper production	PCB	0.00	36.76	0.033	61.32%	61.3%
2K	"Consumption of POPs and heavy metals	PCB	782.70	687.15	0.017	31.33%	92.7%

2.4. Trend in total emissions

This chapter describes the trends and the drivers of air pollutant emissions which Serbia is obliged to report based on the following listed protocols.

From submissions 2018 onwards Serbia reports all mandatory pollutants in the NFR reporting format from 1990 to the latest inventory year.

2.4.1. Nitrogen oxides emission (NOx)

The amount of NOx emissions in 2022 was 184.9173 kt which is around 5.79% more than in 2021 and compared to the base year of 1990 saw an increase of 1.04%.

Figure 1. Distribution of NOx between sectors for period 1990 – 2022

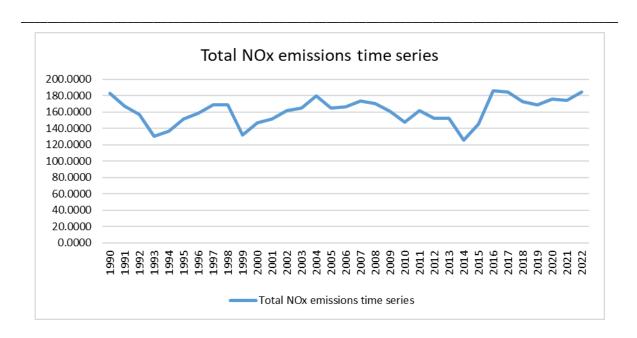


Figure 2. Total NOx emissions time series from 1990 to 2022.

Table 37. Total NOx emissions between sectors for years 1990 and 2022. Trends of dominant sources of NOx emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022.

NFR Category	NOx Emiss	ion in [kt]	Tre	nd	Share in National Total		
Will Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	97.6884	67.7757	-30.62%	-0.45%	53.38%	36.65%	
B Industry	17.8099	14.3169	-19.61%	23.61%	9.73%	7.74%	
C Other Stationary Combustion	6.8737	8.4693	23.21%	6.20%	3.76%	4.58%	
D Fugitive	1.1361	0.9920	-12.68%	15.23%	0.62%	0.54%	
E Solvents	0.0263	0.0829	215.18%	4.25%	0.01%	0.04%	
F Road Transport	49.3183	75.9215	53.94%	6.56%	26.95%	41.06%	
G Shipping + H Aviation + I Offroad	8.9636	10.9620	22.29%	9.34%	4.90%	5.93%	
J Waste	0.0006	0.0029	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	1.1997	6.3941	432.99%	46.81%	0.66%	3.46%	
Total	183.0165	184.9173	1.04%	6.14%	100.00%	100.00%	

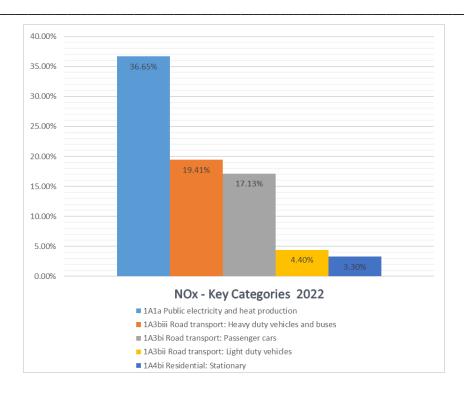


Figure 3. Key Categories assessments of NOx emissions for 2022

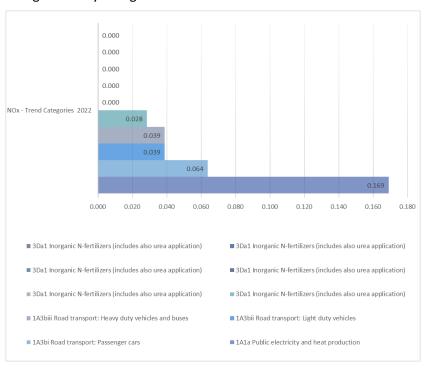


Figure 4. Trends assessments of NOx emissions for base year and 2022

2.4.2. Non-Methane Volatile Organic Compounds (NMVOC)

Anthropogenic NMVOC emissions in Serbia were 134.1905 kt in 2022, which is 0.44 % less than in 2021 compared to the base year of 1990 saw decrease of 29.81 %.

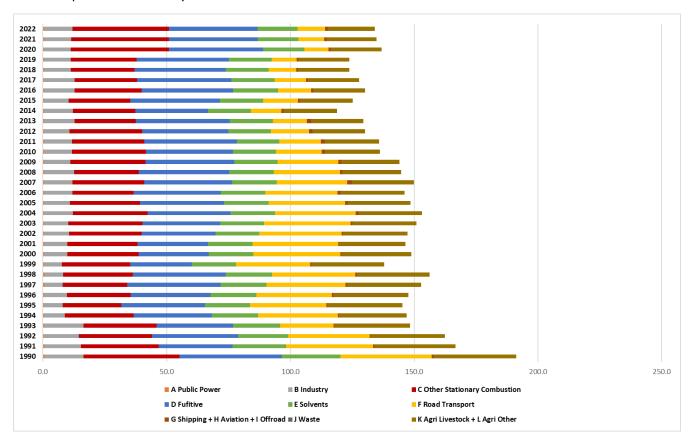


Figure 5. Distribution of NMVOC between sectors for period 1990 – 2022

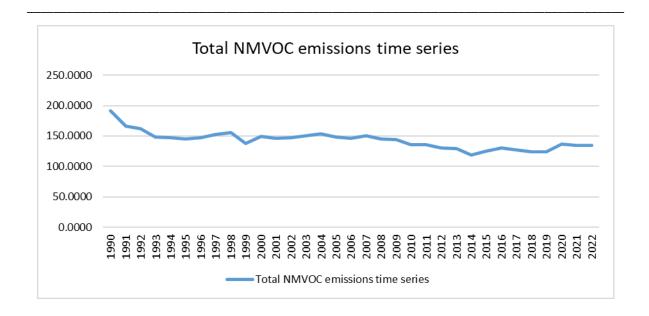


Figure 6.Total NMVOC emissions time series from 1990 to 2022.

Table 38. Total NMVOC emissions between sectors for years 1990 and 2022. Trends of dominant sources of NMVOC emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	NMVOC Emi	ssion in [kt]	Tre	nd	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	0.6139	0.4876	-20.57%	0.29%	0.32%	0.36%	
B Industry	15.8514	11.4677	-27.66%	3.95%	8.29%	8.55%	
C Other Stationary Combustion	38.8170	39.0354	0.56%	-0.74%	20.30%	29.09%	
D Fugitive	41.2610	35.8162	-13.20%	-0.44%	21.58%	26.69%	
E Solvents	23.6752	16.0561	-32.18%	-2.41%	12.38%	11.97%	
F Road Transport	36.8884	11.2621	-69.47%	7.24%	19.29%	8.39%	
G Shipping + H Aviation + I Offroad	0.6932	1.0410	50.17%	11.24%	0.36%	0.78%	
J Waste	0.0001	0.0016	1047.41%	2.01%	0.00%	0.00%	
K Agri Livestock + L Agri Other	33.3979	19.0228	-43.04%	-5.27%	17.47%	14.18%	
Total	191.1981	134.1905	-29.82%	-0.45%	100.00%	100.00%	

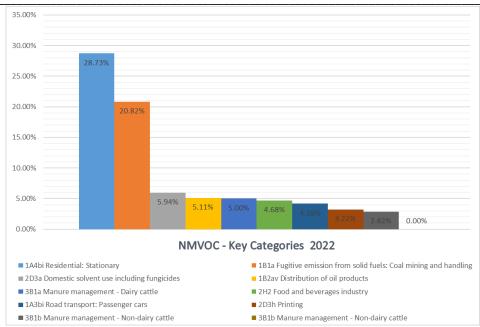


Figure 7. Key Categories assessments of NMVOC emissions for 2022

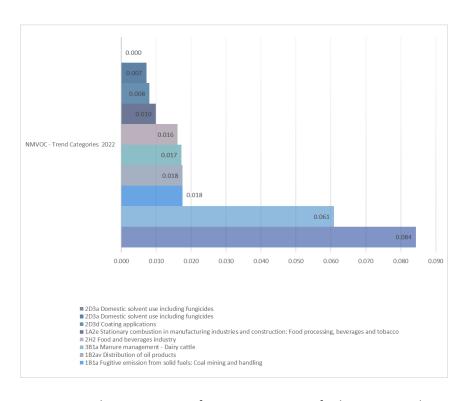


Figure 8. Trends assessments of NMVOC emissions for base year and 2022

2.4.3. Sulphur dioxide emission (SOX)

Total SOx emission in 2022 was 377.3961 kt which is 0.30 % less than in 2021. Compared to the base year of 1990, saw a decrease of 34.54 %

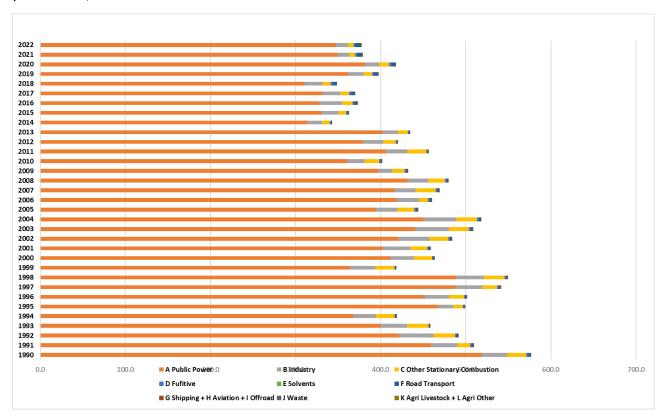


Figure 9. Distribution of SOx between sectors for period 1990 – 2022

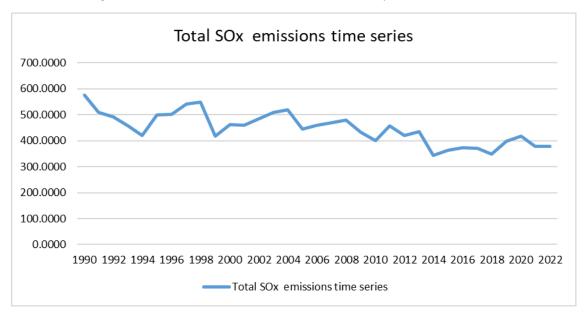


Figure 10. Total SOx emissions time series from 1990 to 2022.

Table 39. Total SOx emissions between sectors for years 1990 and 2022. Trends of dominant sources of SOx emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	SOx Emiss	ion in [kt]	Tre	nd	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	519.0920	347.3261	-33.09%	-0.61%	90.03%	92.03%	
B Industry	29.9822	13.9327	-53.53%	3.66%	5.20%	3.69%	
C Other Stationary Combustion	22.0086	6.9418	-68.46%	-4.16%	3.82%	1.84%	
D Fugitive	2.9316	2.5621	-12.60%	15.25%	0.51%	0.68%	
E Solvents	NA	NA	NA	NA	NA	NA	
F Road Transport	1.7353	6.1273	253.10%	8.88%	0.30%	1.62%	
G Shipping + H Aviation + I Offroad	0.8420	0.5049	-40.04%	-3.35%	0.15%	0.13%	
J Waste	0.0001	0.0004	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	0.0011	0.0008	-24.47%	-5.21%	0.00%	0.00%	
Total	576.5929	377.3961	-34.55%	-0.30%	100.00%	100.00%	

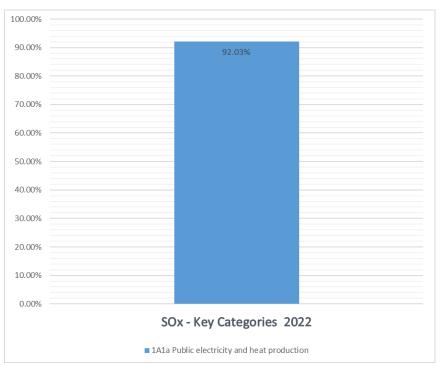


Figure 11. Key Categories assessments of SOx emissions for 2022.

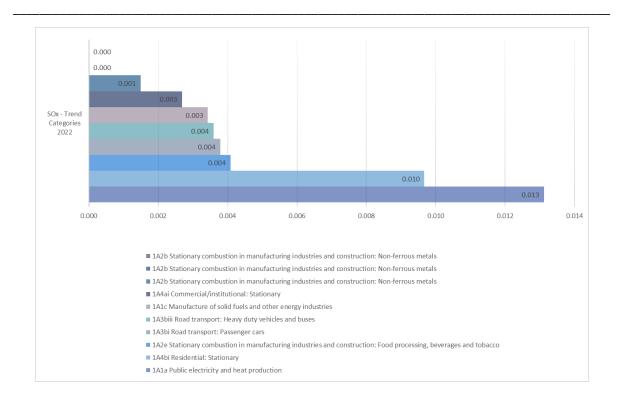


Figure 12. Trends assessments of SOx emissions for base year and 2022

2.4.4. Ammonia (NH3)

 NH_3 emissions in 2022. was 71.0173 kt, which is 1.71 % decrease compared to 2021. Compared to the 1990 baseline emissions of NH_3 is 43.64 % lower.

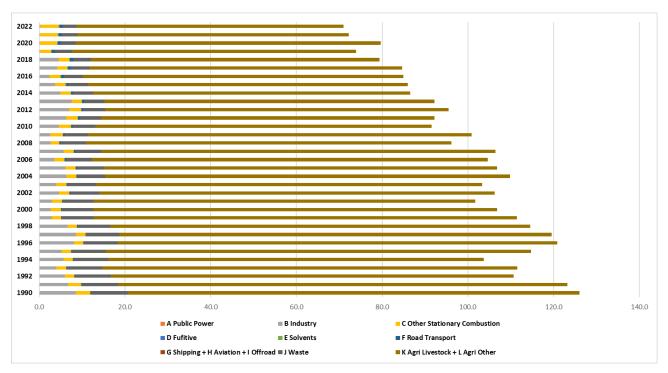


Figure 13. Distribution of NH₃ between sectors for period 1990 – 2022

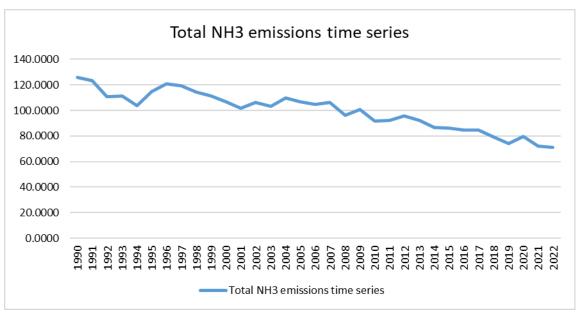


Figure 14.Total NH3 emissions time series from 1990 to 2022.

Table 40. Total NH_3 emissions between sectors for years 1990 and 2022. Trends of dominant sources of NH_3 emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	NH3 Emission in [kt]		Tre	nd	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	NA	NA	NA	NA	NA	NA	
B Industry	8.5014	0.3347	-96.06%	71.17%	6.75%	0.47%	
C Other Stationary Combustion	3.4316	4.1893	22.08%	-0.02%	2.72%	5.90%	
D Fugitive	0.0130	0.0058	-55.28%	-3.05%	0.01%	0.01%	
E Solvents	0.0631	0.1910	202.50%	4.25%	0.05%	0.27%	
F Road Transport	0.0268	0.7313	2628.83%	3.12%	0.02%	1.03%	
G Shipping + H Aviation + I Offroad	0.0008	0.0020	136.84%	12.24%	0.00%	0.00%	
J Waste	8.6285	3.2515	-62.32%	-8.85%	6.85%	4.58%	
K Agri Livestock + L Agri Other	105.3468	62.3117	-40.85%	-1.69%	83.60%	87.74%	
Total	126.0121	71.0173	-43.64%	-1.68%	100.00%	100.00%	

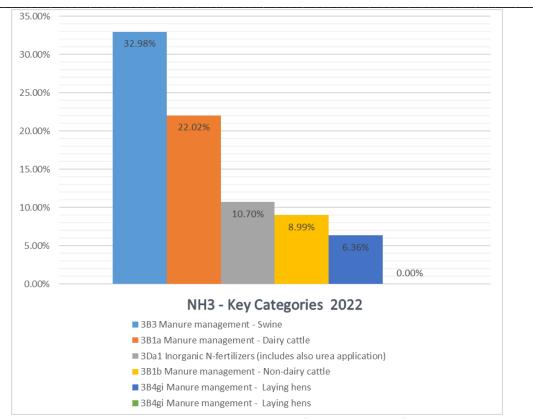


Figure 15. Key Categories assessments of NH3 emissions for 2022

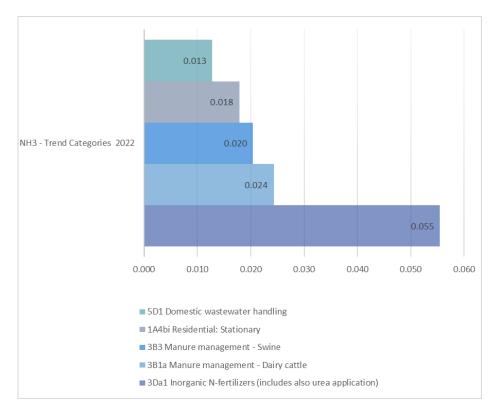


Figure 16. Trends assessments of NH3 emissions for base year and 2022

PARTICULATE MATTER

2.4.5. PM 2.5 Emission

PM 2.5 emissions in 2022. was 60.2295 kt, which is 2.20 % increase compared to 2021. Compared to the 1990 baseline emissions of PM 2.5 is 10.11 % higher.

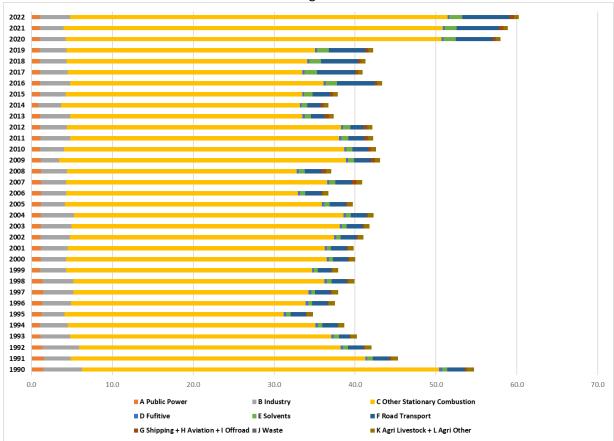


Figure 17. Distribution of PM2.5 between sectors for period 1990 – 2022

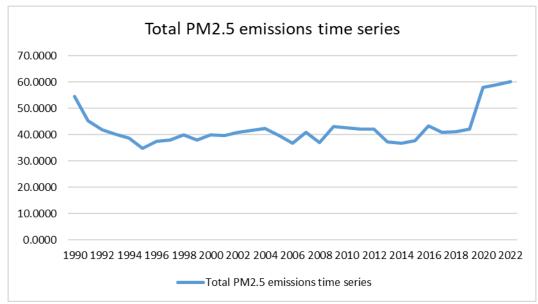


Figure 18.Total PM 2.5 emissions time series from 1990 to 2022.

Table 41. Total PM 2.5 emissions between sectors for years 1990 and 2022. Trends of dominant sources of PM 2.5 emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	PM2.5 Emis	sion in [kt]	Tre	nd	Share in Na	tional Total
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	1.4548	1.0423	-28.35%	3.29%	2.66%	1.73%
B Industry	4.7792	3.7391	-21.76%	27.30%	8.74%	6.21%
C Other Stationary Combustion	44.1754	46.6694	5.65%	-0.49%	80.77%	77.49%
D Fugitive	0.3678	0.2133	-42.02%	-7.81%	0.67%	0.35%
E Solvents	0.6197	1.5696	153.30%	5.19%	1.13%	2.61%
F Road Transport	2.1499	5.8634	172.72%	12.34%	3.93%	9.74%
G Shipping + H Aviation + I Offroad	0.2824	0.5698	101.78%	7.21%	0.52%	0.95%
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.8658	0.5625	-35.03%	-3.61%	1.58%	0.93%
Total	54.6950	60.2295	10.12%	2.25%	100.00%	100.00%

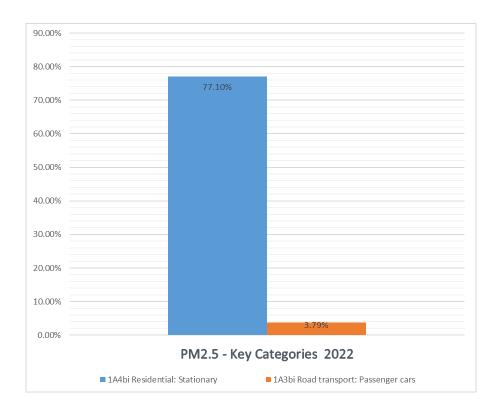


Figure 19. Key Categories assessments of PM 2.5 emissions for 2022.

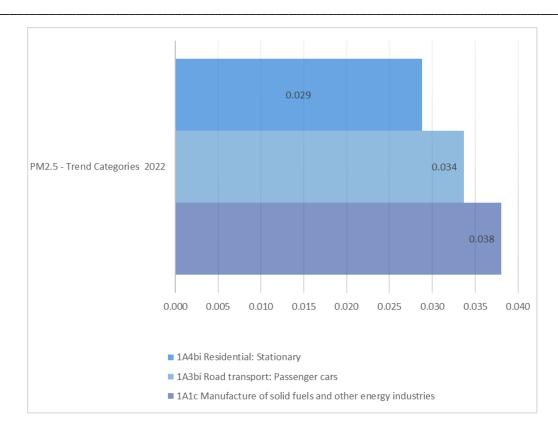


Figure 20. Trends assessments of PM 2.5 emissions for base year and 2022

2.4.6. PM₁₀ Emission

PM 10 emissions in 2022. was 78.3041 kt, which is 2.90 % increase compared to 2021. Compared to the 1990 baseline emissions of PM 10 is 6.88 % lower.

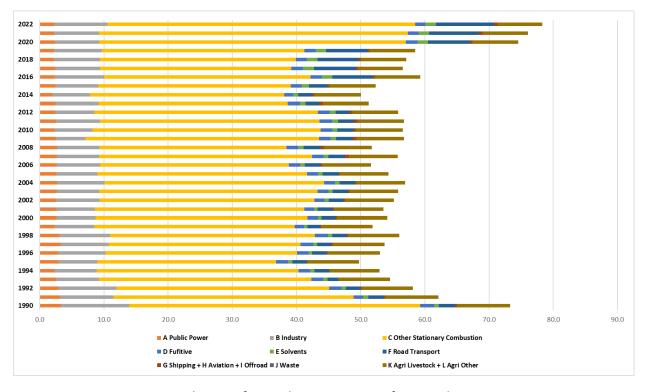


Figure 21. Distribution of PM10 between sectors for period 1990 – 2022.

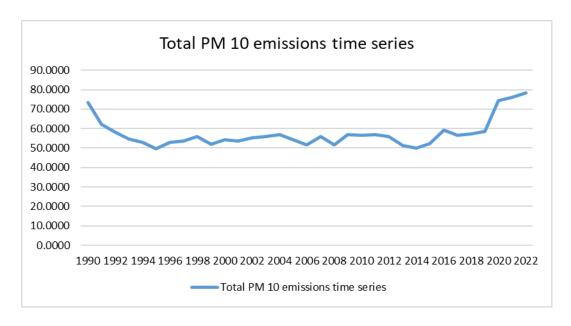


Figure 22. Total PM10 emissions time series from 1990 to 2022.

Table 42. Total PM10 emissions between sectors for years 1990 and 2022. Trends of dominant sources of PM10 emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	PM10 Emis	sion in [kt]	Tre	nd	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	3.3141	2.2895	-30.92%	1.44%	4.52%	2.92%	
B Industry	10.6249	8.2671	-22.19%	18.59%	14.50%	10.56%	
C Other Stationary Combustion	45.3133	47.9211	5.76%	-0.47%	61.86%	61.20%	
D Fugitive	2.1932	1.5574	-28.99%	-5.37%	2.99%	1.99%	
E Solvents	0.7323	1.7331	136.65%	5.53%	1.00%	2.21%	
F Road Transport	2.5266	9.0027	256.32%	15.88%	3.45%	11.50%	
G Shipping + H Aviation + I Offroad	0.3085	0.5820	88.66%	6.80%	0.42%	0.74%	
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	8.2441	6.9510	-15.69%	-1.40%	11.25%	8.88%	
Total	73.2571	78.3041	6.89%	3.00%	100.00%	100.00%	

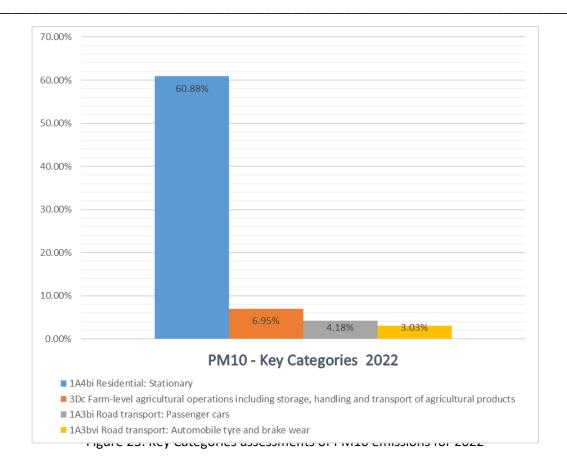


Figure 24. Trends assessments of PM10 emissions for base year and 2022

2.4.7. TSP Emission

TSP emissions in 2022. was 94.3478 kt, which is 1.70 % increase compared to 2021. Compared to the 1990 baseline emissions of TSP is 40.34 % lower.

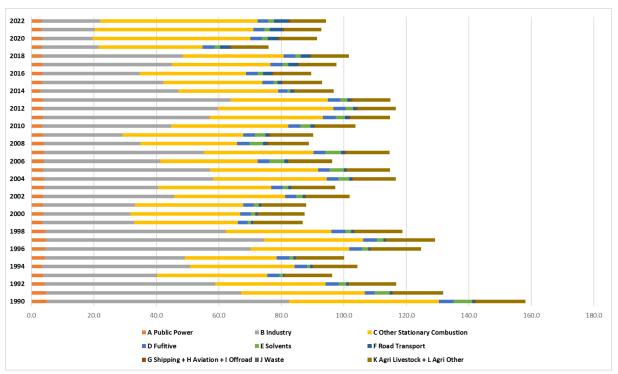


Figure 25.Distribution of TSP between sectors for period 1990 – 2022.

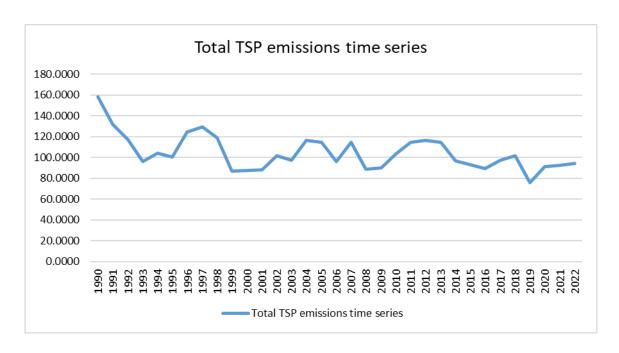


Figure 26. Total TSP emissions time series from 1990 to 2022.

Table 43. Total TSP emissions between sectors for years 1990 and 2022. Trends of dominant sources of TSP emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	TSP Emiss	ion in [kt]	Tre	nd	Share in National Total		
WIN Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	4.8780	3.3300	-31.73%	1.03%	3.08%	3.53%	
B Industry	77.5659	18.5830	-76.04%	9.29%	49.04%	19.70%	
C Other Stationary Combustion	48.0503	50.5413	5.18%	-0.49%	30.38%	53.57%	
D Fugitive	4.7033	3.2926	-29.99%	-5.68%	2.97%	3.49%	
E Solvents	5.8847	1.8420	-68.70%	5.72%	3.72%	1.95%	
F Road Transport	0.7354	4.6718	535.24%	16.27%	0.47%	4.95%	
G Shipping + H Aviation + I Offroad	0.3078	0.5779	87.76%	6.58%	0.19%	0.61%	
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	16.0326	11.5090	-28.22%	-2.93%	10.14%	12.20%	
Total	158.1582	94.3478	-40.35%	1.73%	100.00%	100.00%	

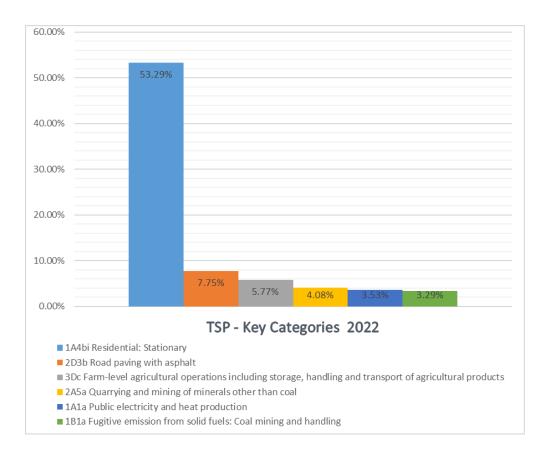


Figure 27. Key Categories assessments of TSP emissions for 2022

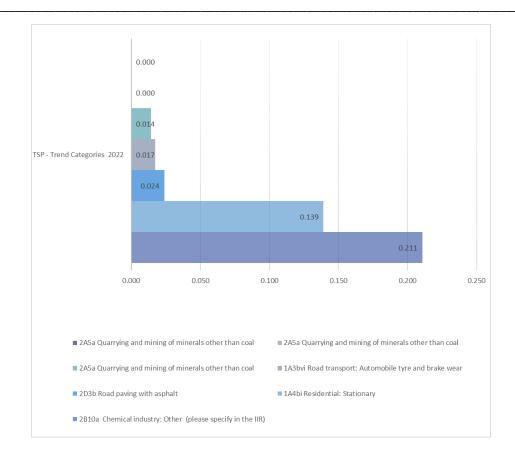


Figure 28. Trends assessments of TSP emissions for base year and 2022

2.4.8. Black Carbon (BC)

BC emissions in 2022. was 5.7845 kt, which is 5.71 % decrease compared to 2021. Compared to the 1990 baseline emissions of BC is 31.82 % lower.

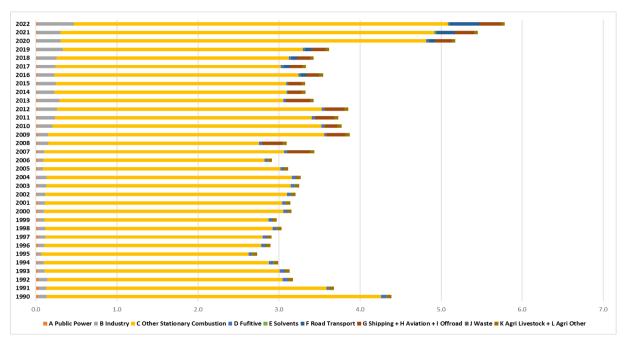


Figure 29. Distribution of BC between sectors for period 1990 – 2022.

Total BC emissions time series

7.0000
6.0000
4.0000
3.0000
1.0000
0.0000
0.0000

Total BC emissions time series

Total BC emissions time series

Figure 30.Total BC emissions time series from 1990 to 2022.

Table 44. Total BC emissions between sectors for years 1990 and 2022. Trends of dominant sources of BC emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	BC Emissi	on in [kt]	Tre	nd	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	0.0248	0.0181	-27.08%	8.41%	0.56%	0.31%	
B Industry	0.1060	0.4503	324.73%	58.00%	2.42%	7.78%	
C Other Stationary Combustion	4.1311	4.6166	11.75%	-0.03%	94.14%	79.81%	
D Fugitive	0.0630	0.0102	-83.75%	-38.24%	1.44%	0.18%	
E Solvents	0.0018	0.0056	215.18%	4.25%	0.04%	0.10%	
F Road Transport	0.0002	0.3714	234176.84%	63.26%	0.00%	6.42%	
G Shipping + H Aviation + I Offroad	0.0012	0.2671	21370.50%	12.48%	0.03%	4.62%	
J Waste	NA	NA	NA	NA	NA	NA	
K Agri Livestock + L Agri Other	0.0600	0.0453	-24.47%	-5.21%	1.37%	0.78%	
Total	4.3880	5.7845	31.83%	6.06%	100.00%	100.00%	

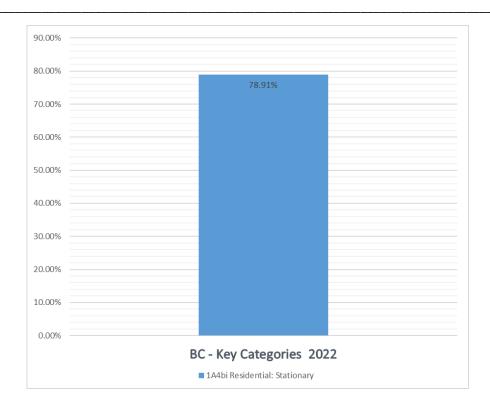


Figure 31. Key Categories assessments of BC emissions for 2022

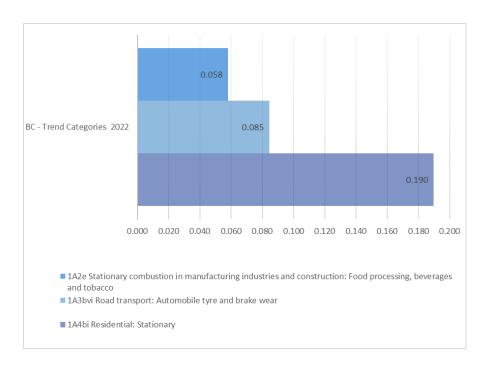


Figure 32. Trends assessments of BC emissions for base year and 2022

OTHER

2.4.9. Carbon Monoxide (CO)

Carbon monoxide (CO) emissions in 2022. was 366.7421 kt, which is 0.54 % increase compared to 2021. Compared to the 1990 baseline emissions of CO is 29.18 % lower.

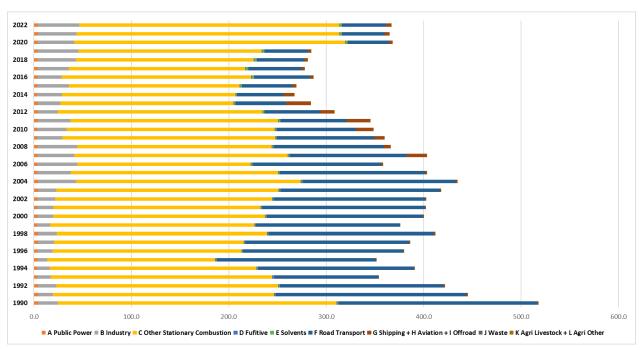


Figure 33. Distribution of CO between sectors for period 1990 – 2022

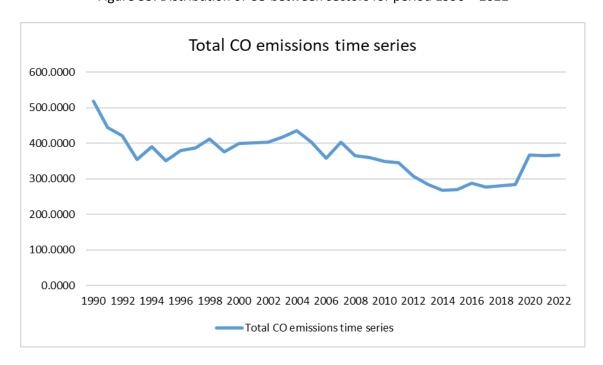


Figure 34. Total CO emissions time series from 1990 to 2022.

Table 45. Total CO emissions between sectors for years 1990 and 2022. Trends of dominant sources of CO emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NED Cotogoni	CO Emissi	ion in [kt]	Tre	nd	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	4.3209	4.0552	-6.15%	0.77%	0.83%	1.11%	
B Industry	20.1935	42.5996	110.96%	6.95%	3.90%	11.62%	
C Other Stationary Combustion	286.0574	266.5373	-6.82%	-1.08%	55.24%	72.68%	
D Fugitive	1.3950	0.5295	-62.04%	-8.36%	0.27%	0.14%	
E Solvents	0.8047	2.5362	215.18%	4.25%	0.16%	0.69%	
F Road Transport	203.5089	45.1010	-77.84%	3.46%	39.30%	12.30%	
G Shipping + H Aviation + I Offroad	1.4480	5.2710	264.03%	12.08%	0.28%	1.44%	
J Waste	0.0001	0.0005	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	0.1482	0.1119	-24.47%	-5.21%	0.03%	0.03%	
Total	517.8765	366.7421	-29.18%	0.55%	100.00%	100.00%	

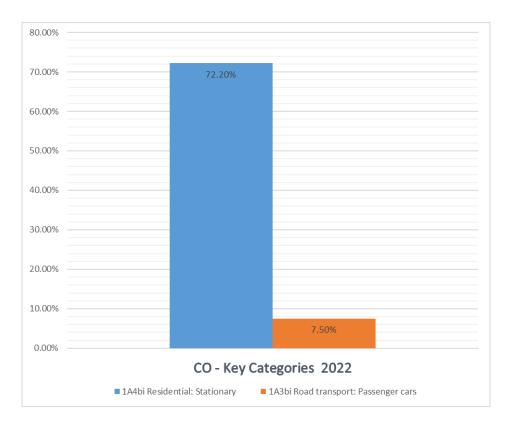


Figure 35. Key Categories assessments of CO emissions for 2022.

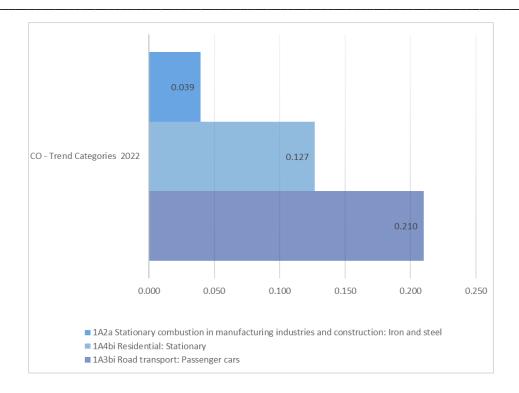


Figure 36. Trends assessments of CO emissions for base year and 2022

PRIORITY HEAVY METALS

2.4.10. Lead Emission (PB)

Lead (Pb) emissions in 2022. was 42.1402 kt, which is 9.09 % increase compared to 2021. Compared to the 1990 baseline emissions of Pb is 88.67 % lower.

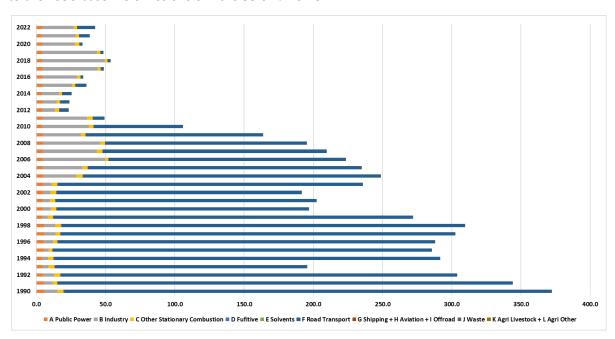


Figure 37. Distribution of Pb between sectors for period 1990 - 2022



Figure 38. Total Pb emissions time series from 1990 to 2022.

Table 46. Total Pb emissions between sectors for years 1990 and 2022. Trends of dominant sources of Pb emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Pb Emissi	on in [kt]	Tre	end	Share in National Total		
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	5.7495	3.8674	-32.74%	-0.49%	1.54%	9.18%	
B Industry	9.3093	22.9811	146.86%	-5.83%	2.50%	54.53%	
C Other Stationary Combustion	4.4439	2.5068	-43.59%	-1.83%	1.19%	5.95%	
D Fugitive	0.8251	0.1513	-81.67%	-33.97%	0.22%	0.36%	
E Solvents	NA	NA	NA	NA	NA	NA	
F Road Transport	351.8605	12.6300	-96.41%	74.62%	94.54%	29.97%	
G Shipping + H Aviation + I Offroad	0.0072	0.0034	-52.50%	-9.52%	0.00%	0.01%	
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	0.0002	0.0002	-24.47%	-5.21%	0.00%	0.00%	
Total	372.1959	42.1402	-88.68%	10.00%	100.00%	100.00%	

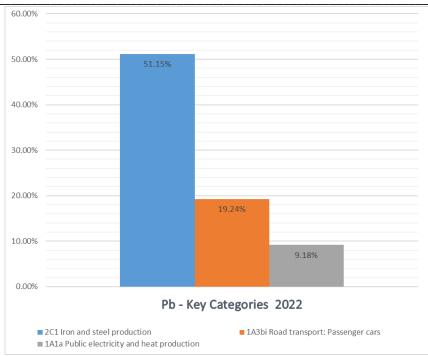


Figure 39. Key Categories assessments of Pb emissions for 2022.

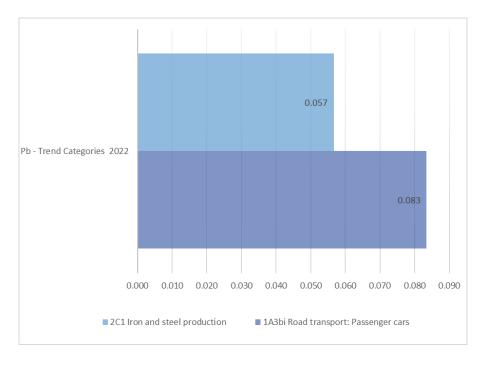


Figure 40. Trends assessments of Pb emissions for base year and 2022

2.4.11. Cadmium Emission (CD)

Cadmium (Cd) emissions in 2022. was 2.1778 t, which is 17.94 % decrease compared to 2021. Compared to the 1990 baseline emissions of Cd is 45.42 % lower.

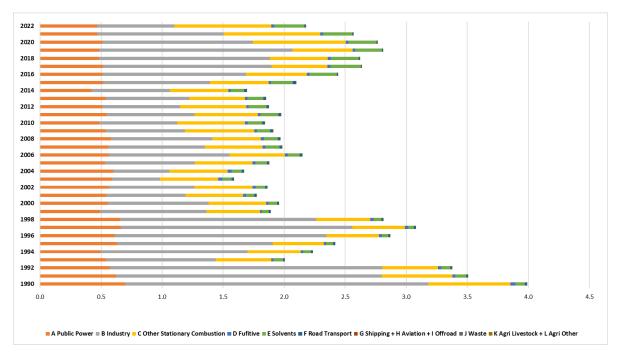


Figure 41. Distribution of Cd between sectors for period 1990 – 2022

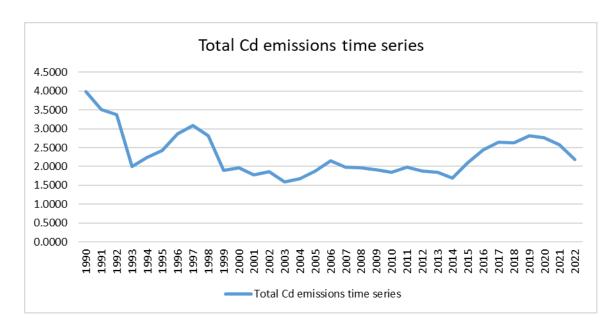


Figure 42. Total Cd emissions time series from 1990 to 2022.

Table 47. Total Cd emissions between sectors for years 1990 and 2022. Trends of dominant sources of Cd emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Cd Emissi	on in [kt]	Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.6972	0.4681	-32.87%	-0.45%	17.47%	21.49%
B Industry	2.4832	0.6336	-74.48%	-38.77%	62.23%	29.10%
C Other Stationary Combustion	0.6736	0.7911	17.43%	0.04%	16.88%	36.32%
D Fugitive	0.0389	0.0235	-39.60%	5.89%	0.97%	1.08%
E Solvents	0.0789	0.2486	215.01%	4.25%	1.98%	11.41%
F Road Transport	0.0155	0.0110	-28.84%	9.29%	0.39%	0.51%
G Shipping + H Aviation + I Offroad	0.0011	0.0005	-55.26%	-9.18%	0.03%	0.02%
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.0020	0.0015	-24.47%	-5.21%	0.05%	0.07%
Total	3.9904	2.1778	-45.42%	-15.22%	100.00%	100.00%

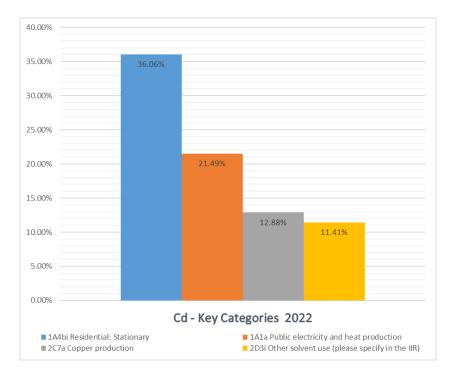


Figure 43. Key Categories assessments of Cd emissions for 2022.

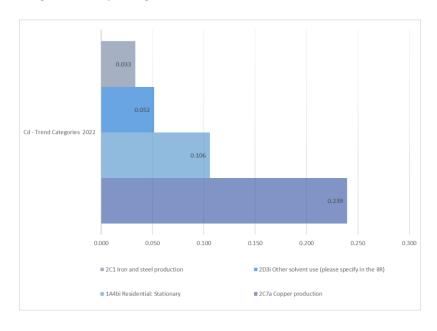


Figure 44. Trends assessments of Cd emissions for base year and 2022

2.4.12. Mercury Emission (HG)

Mercury (Hg) emissions in 2022. was 1.3678 t, which is 5.95 % decrease compared to 2021. Compared to the 1990 baseline emissions of Cd is 50.59 % lower.

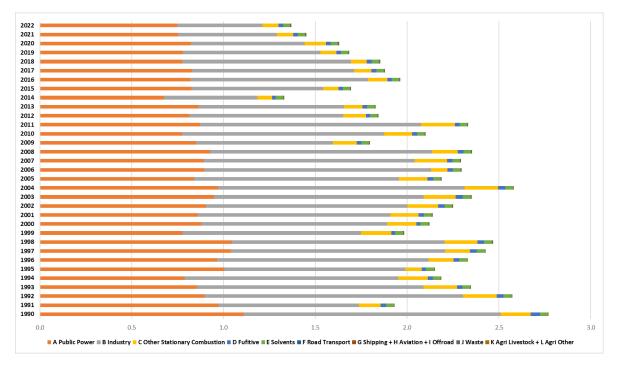


Figure 45. Distribution of Hg between sectors for period 1990 – 2022

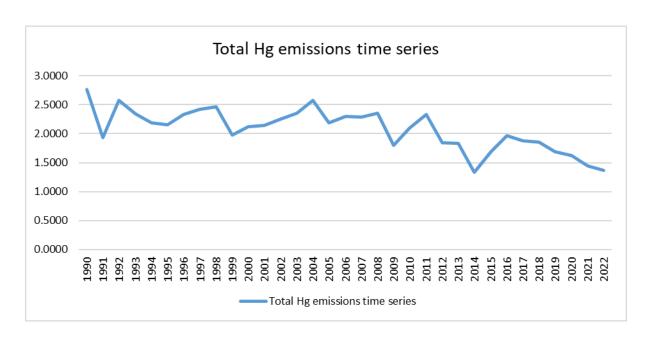


Figure 46. Total Hg emissions time series from 1990 to 2022.

Table 48. Total Hg emissions between sectors for years 1990 and 2022. Trends of dominant sources of Hg emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022.

NFR Category	Hg Emissi	on in [kt]	Tre	nd	Share in Na	tional Total
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	1.1077	0.7478	-32.49%	-0.58%	40.01%	54.67%
B Industry	1.4013	0.4629	-66.97%	-13.96%	50.62%	33.84%
C Other Stationary Combustion	0.1639	0.0888	-45.84%	-0.10%	5.92%	6.49%
D Fugitive	0.0494	0.0252	-49.02%	0.98%	1.78%	1.84%
E Solvents	0.0438	0.0372	-15.15%	-2.29%	1.58%	2.72%
F Road Transport	NA	NA	NA	NA	NA	NA
G Shipping + H Aviation + I Offroad	0.0008	0.0004	-52.50%	-9.52%	0.03%	0.03%
J Waste	0.0011	0.0053	396.65%	-18.49%	0.04%	0.39%
K Agri Livestock + L Agri Other	0.0003	0.0002	-24.47%	-5.21%	0.01%	0.02%
Total	2.7684	1.3678	-50.59%	-5.62%	100.00%	100.00%

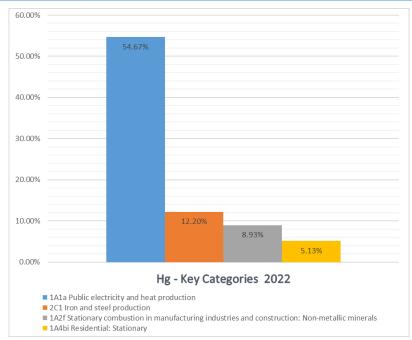


Figure 47. Key Categories assessments of Hg emissions for 2022.

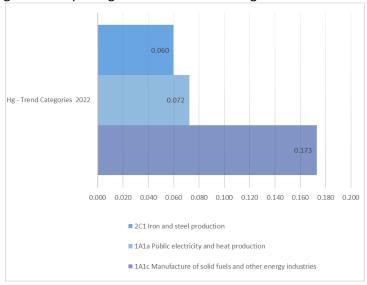


Figure 48. Trends assessments of Hg emissions for base year and 2022

Other Heavy Metals (AS, CR, CU, NI, SE AND ZN)

2.4.13. Arsenic emission (AS)

Arsenic (As) emissions in 2022. was 4.8501 t, which is 4.79 % decrease compared to 2021. Compared to the 1990 baseline emissions of As is 37.48 % lower.

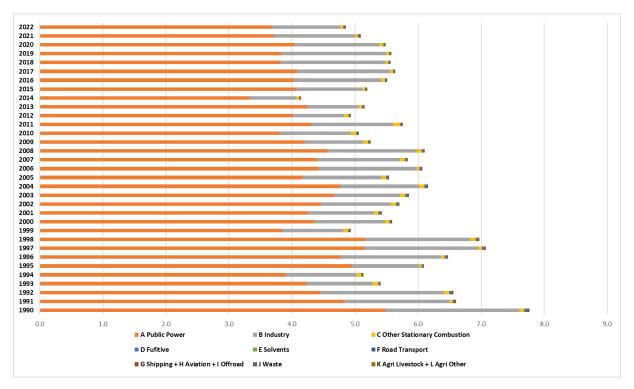


Figure 49. Distribution of As between sectors for period 1990 – 2022.

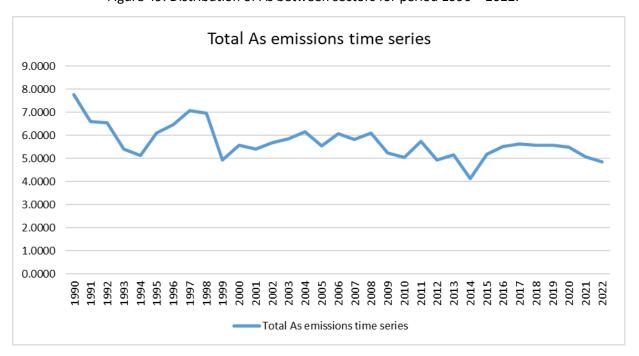


Figure 50. Total As emissions time series from 1990 to 2022.

Table 49. Total As emissions between sectors for years 1990 and 2022. Trends of dominant sources of As emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	As Emissi	on in [kt]	Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	5.4803	3.6828	-32.80%	-0.56%	70.64%	75.93%
B Industry	2.1222	1.0795	-49.13%	-16.70%	27.35%	22.26%
C Other Stationary Combustion	0.0769	0.0493	-35.90%	13.79%	0.99%	1.02%
D Fugitive	0.0515	0.0255	-50.44%	0.13%	0.66%	0.53%
E Solvents	0.0002	NA	NA	NA	0.00%	NA
F Road Transport	NA	NA	NA	NA	NA	NA
G Shipping + H Aviation + I Offroad	0.0272	0.0129	-52.50%	-9.52%	0.35%	0.27%
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.0000	0.0000	-24.47%	-5.21%	0.00%	0.00%
Total	7.7583	4.8501	-37.48%	-4.58%	100.00%	100.00%

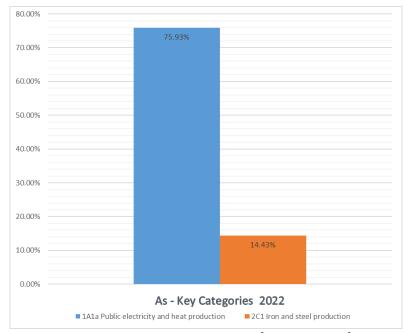


Figure 51. Key Categories assessments of As emissions for 2022

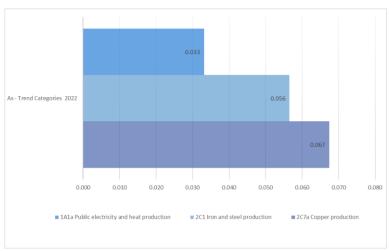


Figure 52. Trends assessments of As emissions for base year and 2022

2.4.14. Chromium emission (Cr)

Chromium (Cr) emissions in 2022. was 14.9502 t, which is 11.05 % increase compared to 2021. Compared to the 1990 baseline emissions of Cr is 28.63 % higher.

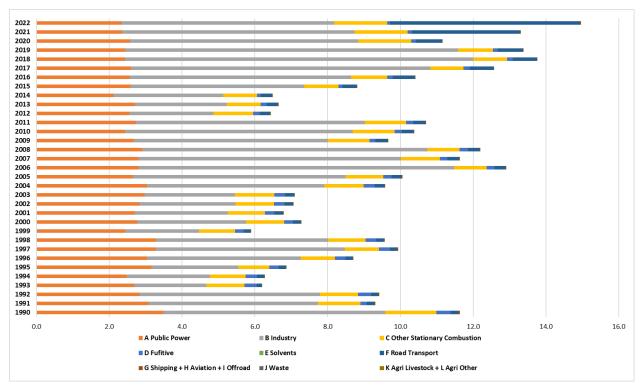


Figure 53. Distribution of Cr between sectors for period 1990 – 2022.

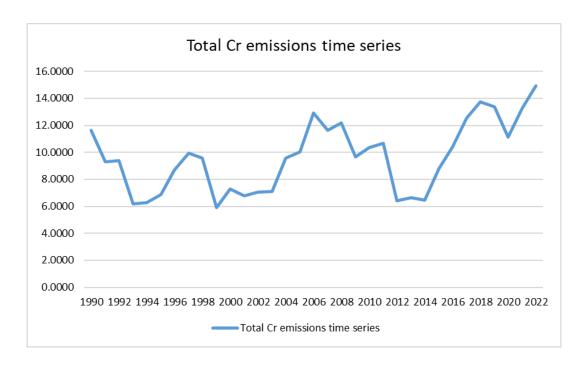


Figure 54. Total Cr emissions time series from 1990 to 2022.

Table 50. Total Cr emissions between sectors for years 1990 and 2022. Trends of dominant sources of Cr emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Cr Emissi	on in [kt]	Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	3.4859	2.3423	-32.81%	-0.53%	29.99%	15.67%
B Industry	6.1020	5.8375	-4.34%	-8.60%	52.50%	39.05%
C Other Stationary Combustion	1.4051	1.4581	3.78%	-0.20%	12.09%	9.75%
D Fugitive	0.3825	0.0793	-79.26%	-29.55%	3.29%	0.53%
E Solvents	0.0025	NA	NA	NA	0.02%	NA
F Road Transport	0.2136	5.2186	2343.14%	75.90%	1.84%	34.91%
G Shipping + H Aviation + I Offroad	0.0303	0.0142	-53.00%	-9.46%	0.26%	0.10%
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.0002	0.0001	-24.47%	-5.21%	0.00%	0.00%
Total	11.6222	14.9502	28.64%	12.43%	100.00%	100.00%

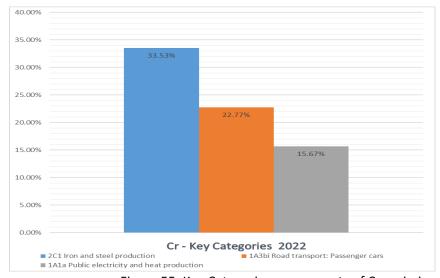


Figure 55. Key Categories assessments of Cr emissions for 2022.

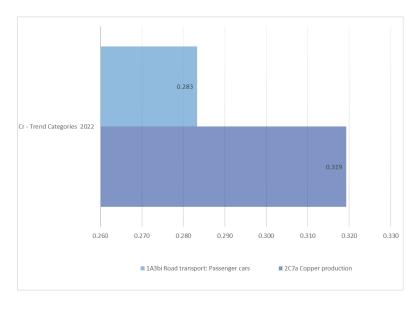


Figure 56. Trends assessments of Cr emissions for base year and 2022

2.4.15. Copper emission (Cu)

Copper (Cu) emissions in 2022. was 20.6510 t, which is 7.62 % decrease compared to 2021. Compared to the 1990 baseline emissions of Cu is 24.58 % higher.

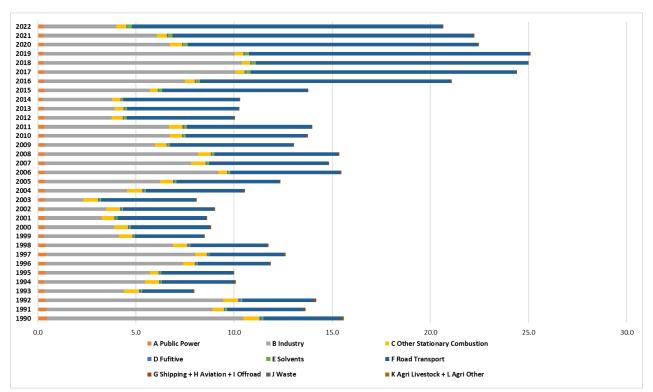


Figure 57. Distribution of Cu between sectors for period 1990 – 2022.

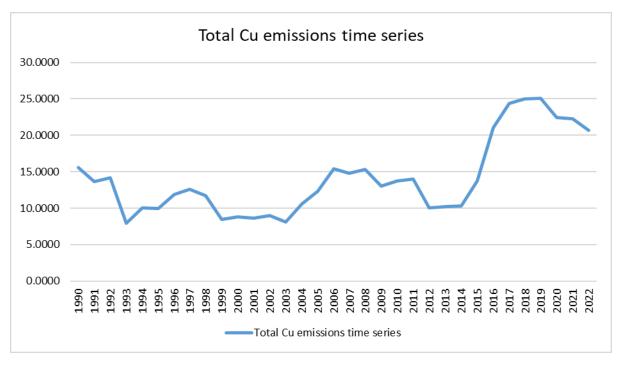


Figure 58. Total Cu emissions time series from 1990 to 2022.

Table 51. Total Cu emissions between sectors for years 1990 and 2022. Trends of dominant sources of Cu emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Cu Emissi	on in [kt]	Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.4700	0.2996	-36.25%	1.83%	3.02%	1.45%
B Industry	10.0102	3.6989	-63.05%	-35.95%	64.27%	17.91%
C Other Stationary Combustion	0.8002	0.5117	-36.06%	-1.39%	5.14%	2.48%
D Fugitive	0.1253	0.0375	-70.05%	-16.46%	0.80%	0.18%
E Solvents	0.0789	0.2486	215.18%	4.25%	0.51%	1.20%
F Road Transport	3.9889	15.8118	296.39%	3.30%	25.61%	76.57%
G Shipping + H Aviation + I Offroad	0.1010	0.0428	-57.60%	-8.85%	0.65%	0.21%
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.0002	0.0001	-24.47%	-5.21%	0.00%	0.00%
Total	15.5746	20.6510	32.59%	-7.09%	100.00%	100.00%

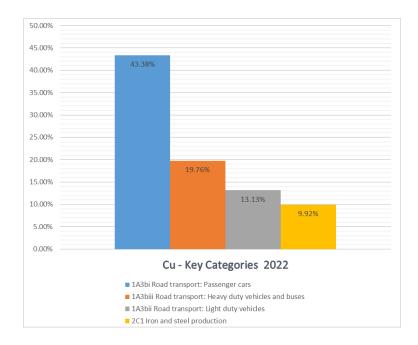


Figure 59. Key Categories assessments of Cu emissions for 2022

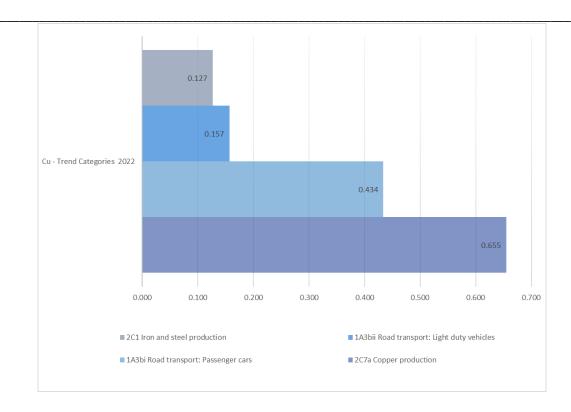


Figure 60. Trends assessments of Cu emissions for base year and 2022

2.4.16. Nickel emission (Ni)

Nickel (Ni) emissions in 2022. was 15.4103 t, which is 2.69 % increase compared to 2021. Compared to the 1990 baseline emissions of Ni is 9.60 % lower.

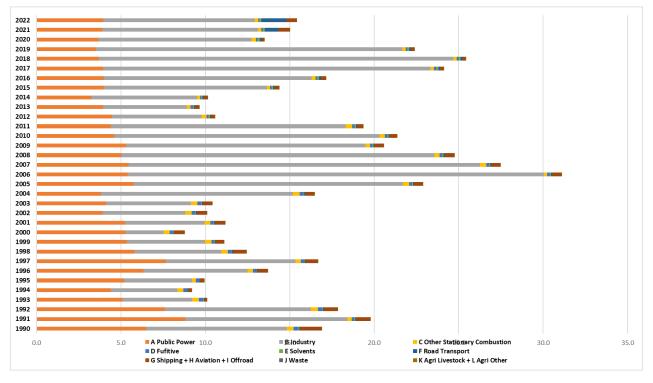


Figure 61. Distribution of Ni between sectors for period 1990 – 2022

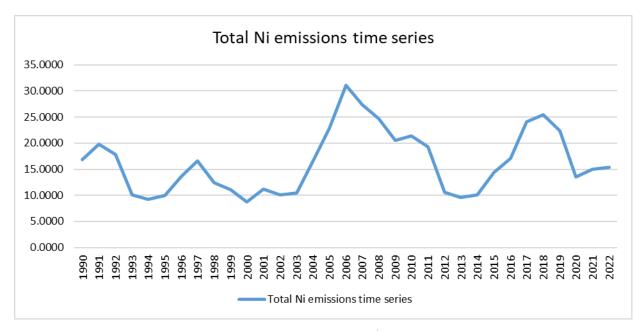


Figure 62. Total Ni emissions time series from 1990 to 2022.

Table 52. Total Ni emissions between sectors for years 1990 and 2022. Trends of dominant sources of Ni emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Ni Emissi	on in [kt]	Trend		Share in Na	Share in National Total	
With Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	6.4871	3.9704	-38.80%	2.02%		25.76%	
B Industry	8.3378	8.9518	7.36%	-2.87%	49.36%	58.09%	
C Other Stationary Combustion	0.4024	0.2076	-48.42%	-2.02%	2.38%	1.35%	
D Fugitive	0.2771	0.0622	-77.56%	-26.71%	1.64%	0.40%	
E Solvents	0.0606	0.1243	105.13%	4.25%	0.36%	0.81%	
F Road Transport	0.0430	1.4852	3353.89%	86.00%	0.25%	9.64%	
G Shipping + H Aviation + I Offroad	1.2821	0.6088	-52.52%	-9.52%	7.59%	3.95%	
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	0.0001	0.0001	-24.47%	-5.21%	0.00%	0.00%	
Total	16.8902	15.4103	-8.76%	2.77%	100.00%	100.00%	

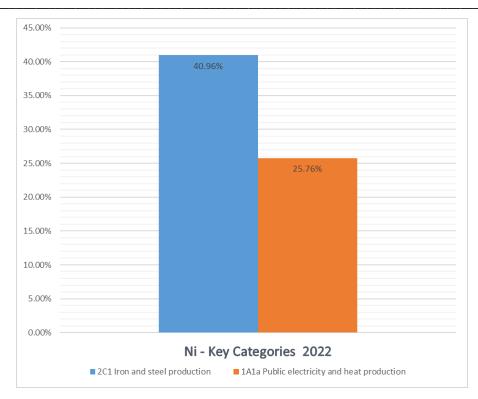


Figure 63. Key Categories assessments of Ni emissions for 2022

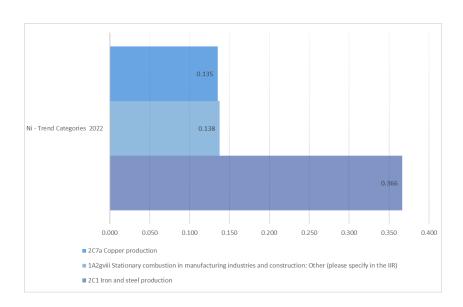


Figure 64. Trends assessments of Ni emissions for base year and 2022

2.4.17. Selenium emission (Se)

Selenium (Se) emissions in 2022. was 12.1519 t, which is 0.10 % increase compared to 2021. Compared to the 1990 baseline emissions of Se is 45.96 % lower.

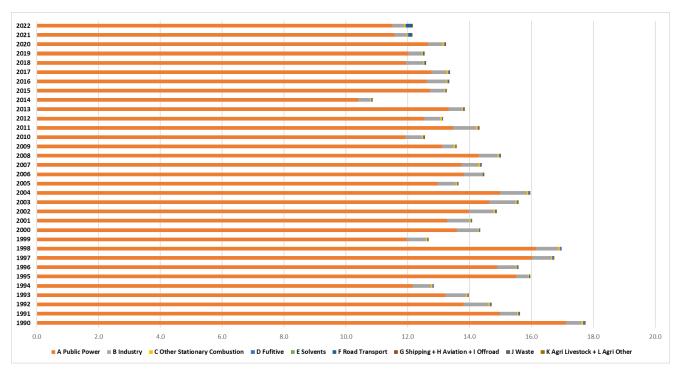


Figure 65. Distribution of Se between sectors for period 1990 – 2022.

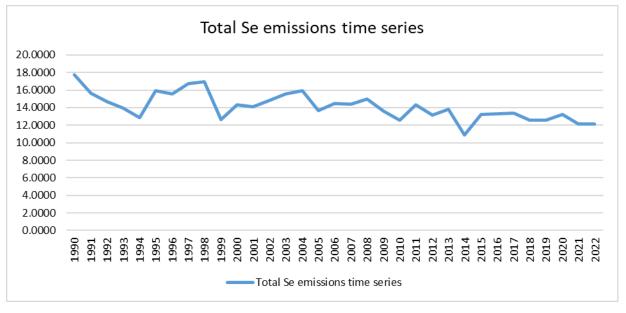


Figure 66. Total Se emissions time series from 1990 to 2022.

Table 53. Total Se emissions between sectors for years 1990 and 2022. Trends of dominant sources of Se emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Se Emissi	on in [kt]	Trend		Share in National Total	
With Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	17.1257	11.4972	-32.87%	-0.66%	96.55%	94.61%
B Industry	0.4881	0.3863	-20.86%	-0.26%	2.75%	3.18%
C Other Stationary Combustion	0.0526	0.0468	-11.07%	7.08%	0.30%	0.38%
D Fugitive	0.0578	0.0266	-54.08%	-2.22%	0.33%	0.22%
E Solvents	0.0002	NA	NA	NA	0.00%	NA
F Road Transport	0.0038	0.1908	4921.44%	84.29%	0.02%	1.57%
G Shipping + H Aviation + I Offroad	0.0087	0.0041	-52.85%	-9.48%	0.05%	0.03%
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.0000	0.0000	-24.47%	-5.21%	0.00%	0.00%
Total	17.7370	12.1519	-31.49%	0.10%	100.00%	100.00%

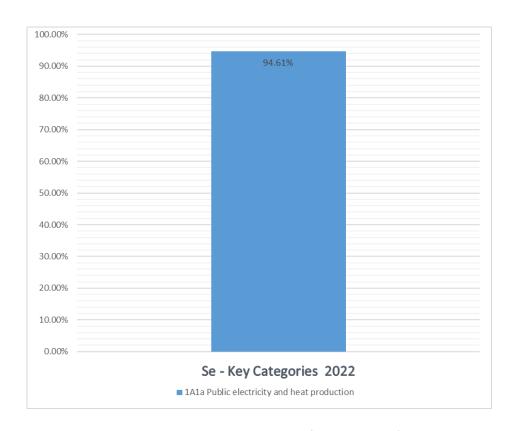


Figure 67. Key Categories assessments of Se emissions for 2022.

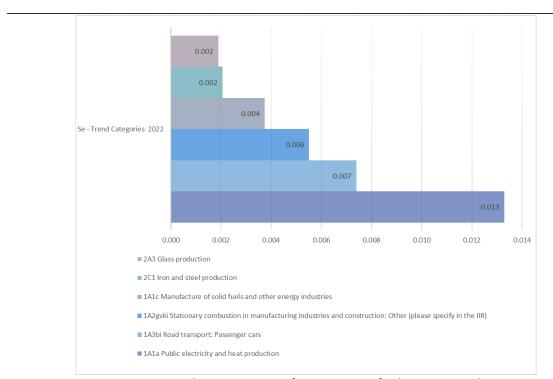


Figure 68. Trends assessments of Se emissions for base year and 2022

2.4.18. Zinc emission (Zn)

Zinc (Zn) emissions in 2022. was 65.3607 t, which is 3.25 % increase compared to 2021. Compared to the 1990 baseline emissions of Zn is 23.73 % higher.

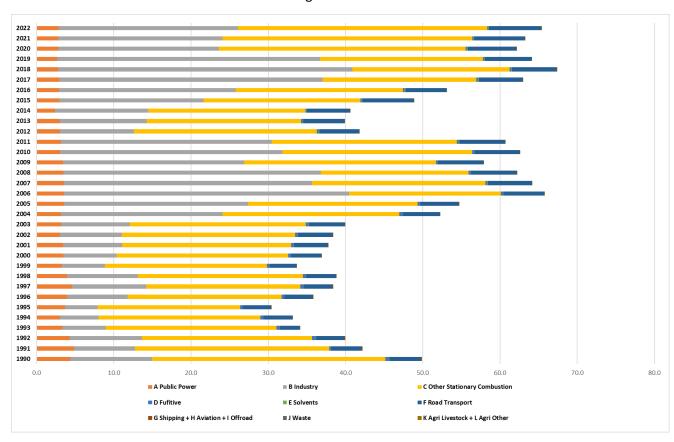


Figure 69. Distribution of Zn between sectors for period 1990 - 2022

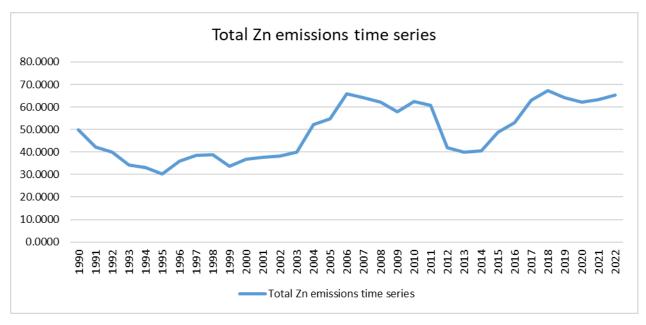


Figure 70. Total Zn emissions time series from 1990 to 2022.

Table 54. Total Zn emissions between sectors for years 1990 and 2022. Trends of dominant sources of Zn emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Zn Emission in [kt]		Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	4.3718	2.8594	-34.59%	2.11%	8.77%	4.37%
B Industry	10.5630	23.2168	119.79%	8.99%	21.19%	35.52%
C Other Stationary Combustion	30.2015	32.2595	6.81%	-0.13%	60.59%	49.36%
D Fugitive	0.4879	0.0964	-80.23%	-31.27%	0.98%	0.15%
E Solvents	0.0394	0.1243	215.18%	4.25%	0.08%	0.19%
F Road Transport	4.1025	6.7688	64.99%	3.66%	8.23%	10.36%
G Shipping + H Aviation + I Offroad	0.0780	0.0340	-56.39%	-9.03%	0.16%	0.05%
J Waste	0.0001	0.0006	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.0012	0.0009	-24.47%	-5.21%	0.00%	0.00%
Total	49.8455	65.3607	31.13%	3.37%	100.00%	100.00%

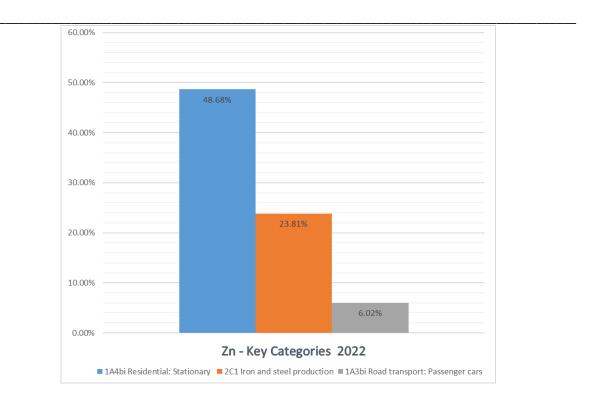


Figure 71. Key Categories assessments of Zn emissions for 2022

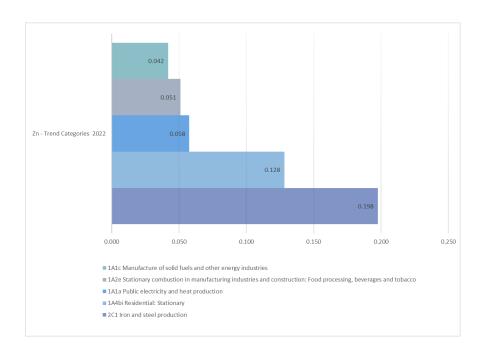


Figure 72. Trends assessments of Zn emissions for base year and 2022

PERSISTENT ORGANIC POLLUTANTS EMISSION (POP s)

2.4.19. DIOXINS AND FURANS EMISSION (PCDD/PCDF)

Dioxins and furans (PCDD/PCDF) emissions in 2022. was 71.9748 g I-TEQ, which is 2.25 % decrease compared to 2021. Compared to the 1990 baseline emissions of PCDD/PCDF is 2.10 % lower.

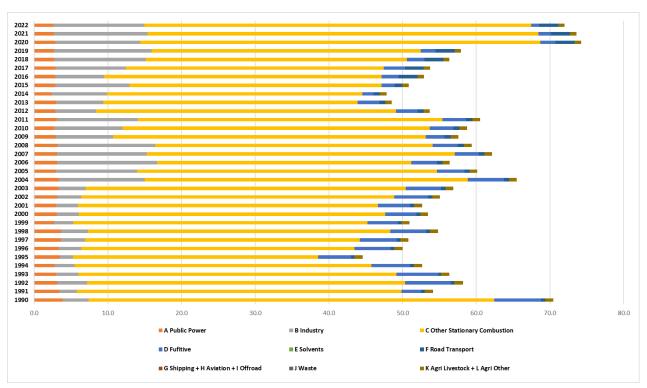


Figure 73. Distribution of PCDD/PCDF between sectors for period 1990 – 2022

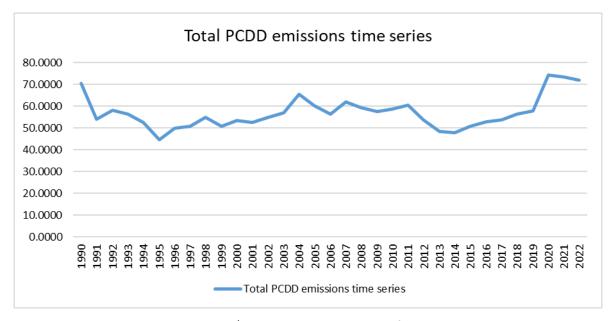


Figure 74. Total PCDD/PCDF emissions time series from 1990 to 2022.

Table 55. Total PCDD/PCDF emissions between sectors for years 1990 and 2022. Trends of dominant sources of PCDD emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	PCDD/PCDF Er	mission in [kt]	Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	3.8599	2.6155	-32.24%	-0.17%	5.48%	3.63%
B Industry	3.5140	12.3274	250.81%	-3.42%	4.99%	17.13%
C Other Stationary Combustion	55.0742	52.5242	-4.63%	-0.95%	78.16%	72.98%
D Fugitive	6.3509	1.0513	-83.45%	-37.59%	9.01%	1.46%
E Solvents	0.0015	0.0046	215.18%	4.25%	0.00%	0.01%
F Road Transport	0.5326	2.6038	388.88%	-0.01%	0.76%	3.62%
G Shipping + H Aviation + I Offroad	0.0188	0.0089	-52.50%	-9.52%	0.03%	0.01%
J Waste	0.0000	0.0001	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	1.1106	0.8388	-24.47%	-5.21%	1.58%	1.17%
Total	70.4626	71.9748	2.15%	-2.21%	100.00%	100.00%

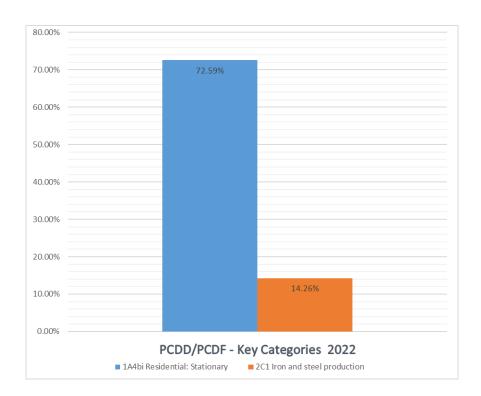


Figure 75. Key Categories assessments of PCDD/PCDF emissions for 2022.

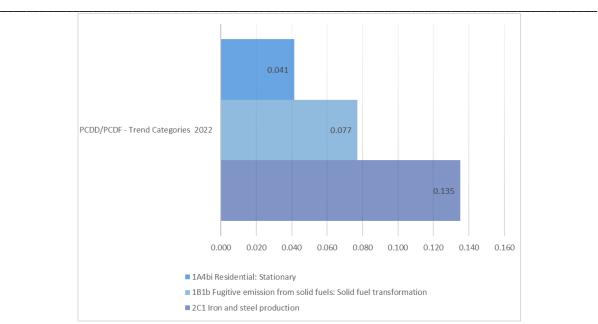


Figure 76. Trends assessments of PCDD/PCDF emissions for base year and 2022

POLYCYCLIC AROMATIC HYDROCARBON (PAH) EMISSION

2.4.20. PAHs - Benzo (a) pyrene

Benzo (a) pyrene emissions in 2022. was 8.9864 t, which is 1.44 % decrease compared to 2021. Compared to the 1990 baseline emissions of Benzo (a) pyrene is 25.77 % lower.

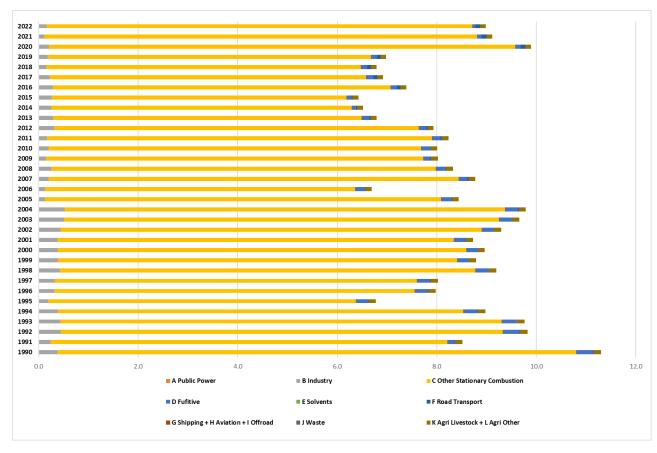


Figure 77. Distribution of Benzo (a) pyrene between sectors for period 1990 – 2022.

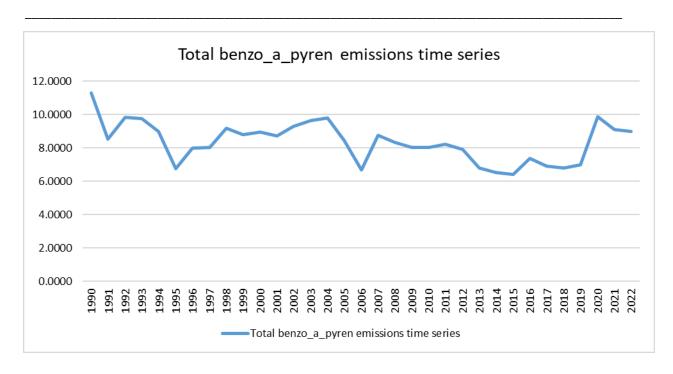


Figure 78. Total benzo a pyren emissions time series from 1990 to 2022.

Table 56. Total benzo (a) pyren emissions between sectors for years 1990 and 2022. Trends of dominant sources of benzo (a) pyren emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022.

NFR Category	benzo a pyren l	Emission in [kt]	Trend		Share in Na	Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022	
A Public Power	0.0005	0.0010	94.10%	36.21%	0.00%	0.01%	
B Industry	0.3722	0.1569	-57.83%	50.44%	3.29%	1.75%	
C Other Stationary Combustion	10.4307	8.5543	-17.99%	-1.72%	92.28%	95.19%	
D Fugitive	0.3373	0.0548	-83.75%	-38.24%	2.98%	0.61%	
E Solvents	0.0016	0.0051	215.18%	4.25%	0.01%	0.06%	
F Road Transport	0.0092	0.1003	987.94%	7.60%	0.08%	1.12%	
G Shipping + H Aviation + I Offroad	0.0009	0.0003	-62.60%	-8.00%	0.01%	0.00%	
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%	
K Agri Livestock + L Agri Other	0.1504	0.1136	-24.47%	-5.21%	1.33%	1.26%	
Total	11.3028	8.9864	-20.49%	-1.42%	100.00%	100.00%	

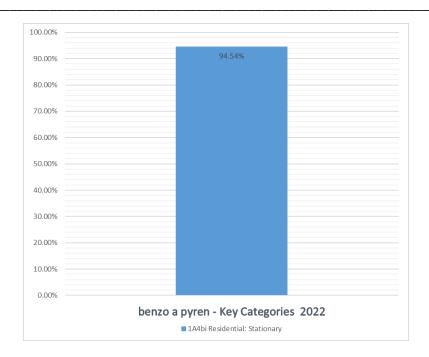


Figure 79. Key Categories assessments of benzo a pyren emissions for 2022.

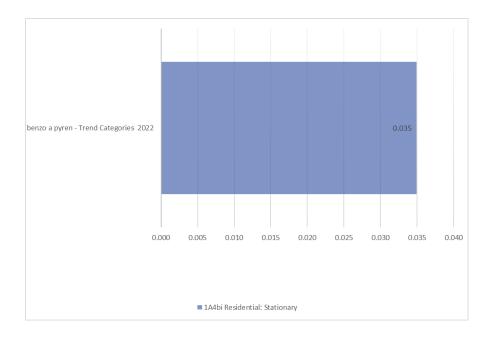


Figure 80. Trends assessments of Benzo a pyren emissions for base year and 2022

2.4.21. PAHs - Benzo (b) fluoranthene

Benzo (b) fluoranthene emissions in 2022. was 9.3584 t, which is 1.70 % decrease compared to 2021. Compared to the 1990 baseline emissions of Benzo (b) fluoranthene is 41.64% lower.

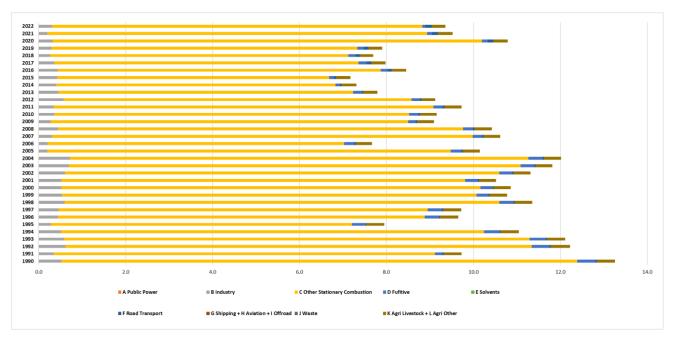


Figure 81. Distribution of benzo (b) fluoranthen between sectors for period 1990 – 2022.

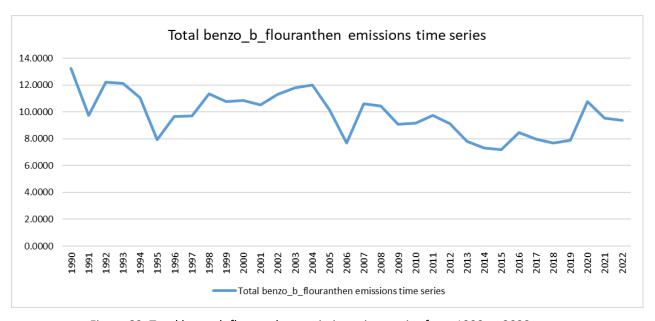


Figure 82. Total benzo b fluoranthen emissions time series from 1990 to 2022.

Table 57. Total benzo (b) fluoranthen emissions between sectors for years 1990 and 2022.

Trends of dominant sources of benzo (b) fluoranthen emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NED Cotogoni	benzo b fluoranthe	en Emission in [kt]	Trend		Share in National Total	
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.0142	0.0095	-32.96%	-0.54%	0.11%	0.10%
B Industry	0.5057	0.2914	-42.37%	55.86%	3.81%	3.11%
C Other Stationary Combustion	11.8677	8.5229	-28.18%	-2.47%	89.53%	91.07%
D Fugitive	0.4216	0.0685	-83.75%	-38.24%	3.18%	0.73%
E Solvents	0.0007	0.0021	215.18%	4.25%	0.00%	0.02%
F Road Transport	0.0243	0.1461	500.23%	8.49%	0.18%	1.56%
G Shipping + H Aviation + I Offroad	0.0015	0.0006	-62.61%	-8.00%	0.01%	0.01%
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.4200	0.3172	-24.47%	-5.21%	3.17%	3.39%
Total	13.2557	9.3584	-29.40%	-1.68%	100.00%	100.00%

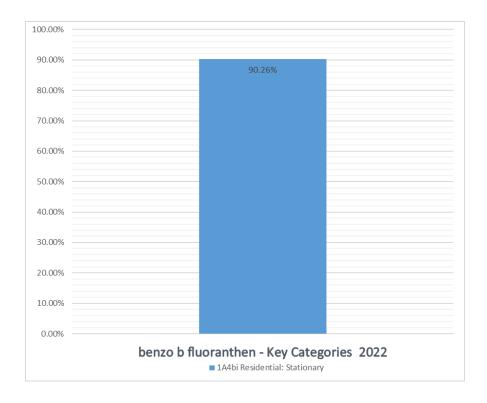


Figure 83. Key Categories assessments of benzo b fluoranthen emissions for 2022.

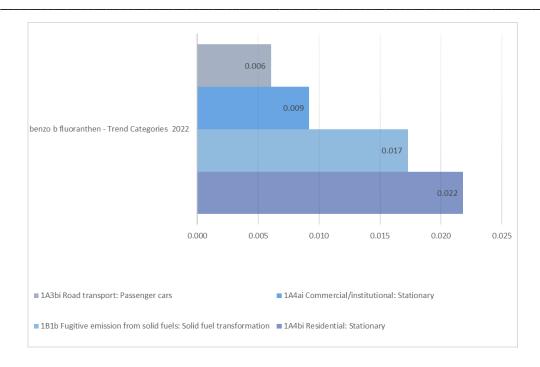


Figure 84. Trends assessments of benzo b fluoranthen emissions for base year and 2022

2.4.22. PAHs - Benzo (k) fluoranthene

Benzo (k) fluoranthene emissions in 2022. was 3.6677 t, which is 1.91 % decrease compared to 2021. Compared to the 1990 baseline emissions of Benzo (k) fluoranthene is 42.74 % lower.

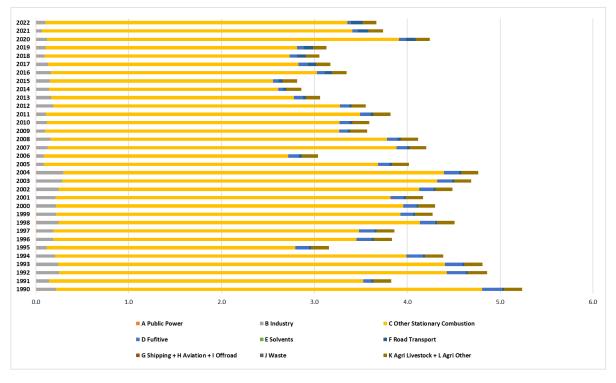


Figure 85. Distribution of benzo (k) fluoranthen between sectors for period 1990 – 2022.

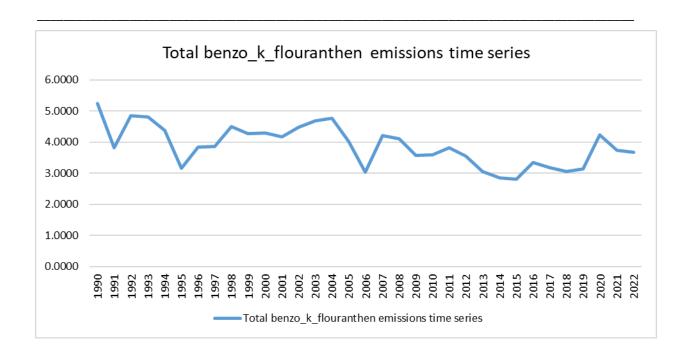


Figure 86. Total benzo k fluoranthen emissions time series from 1990 to 2022.

Table 58. Total benzo k fluoranthen emissions between sectors for years 1990 and 2022. Trends of dominant sources of benzo k fluoranthen x emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	benzo k fluorante	n Emission in [kt]	Tre	nd	Share in Na	tional Total
NFR Category	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.0112	0.0075	-33.01%	-0.59%	0.21%	0.20%
B Industry	0.2022	0.0927	-54.16%	56.98%	3.86%	2.53%
C Other Stationary Combustion	4.5932	3.2548	-29.14%	-2.54%	87.74%	88.74%
D Fugitive	0.2108	0.0343	-83.75%	-38.24%	4.03%	0.93%
E Solvents	0.0007	0.0021	215.18%	4.25%	0.01%	0.06%
F Road Transport	0.0202	0.1275	530.86%	8.77%	0.39%	3.48%
G Shipping + H Aviation + I Offroad	NA	NA	NA	NA	NA	NA
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.1970	0.1488	-24.47%	-5.21%	3.76%	4.06%
Total	5.2353	3.6677	-29.94%	-1.88%	100.00%	100.00%

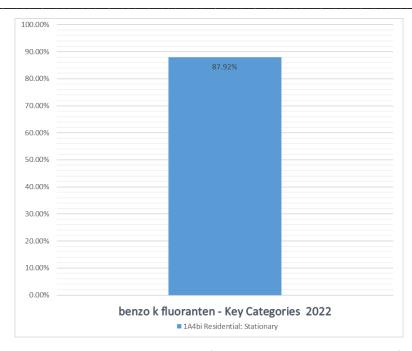


Figure 87. Key Categories assessments of benzo k fluoranthen emissions for 2022.

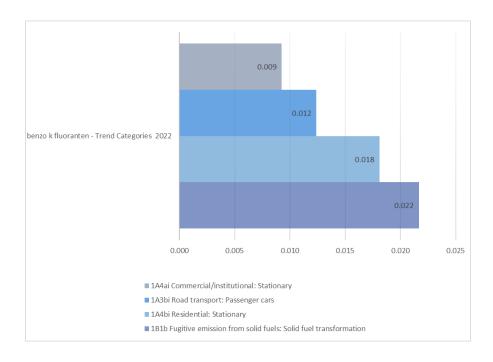


Figure 88. Trends assessments of benzo k fluoranthen emissions for base year and 2022

2.4.23. PAHs - Indeno (1,2,3-cd) pyrene

Indeno (1,2,3-cd) pyrene emissions in 2022. was 5.1737 t, which is 1.09 % decrease compared to 2021. Compared to the 1990 baseline emissions of Indeno (1,2,3-cd) pyrene is 17.30 % lower.

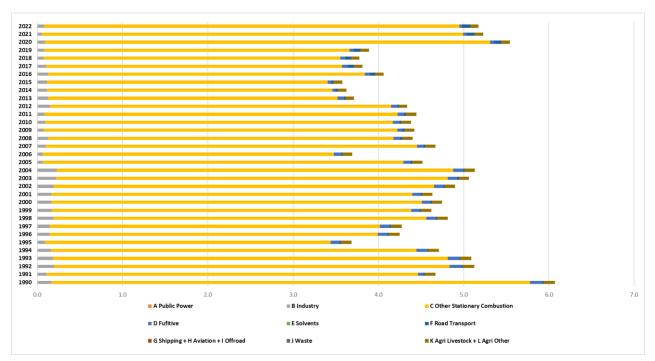


Figure 89. Distribution of Indeno (1,2,3-cd) pyrene between sectors for period 1990 – 2022.

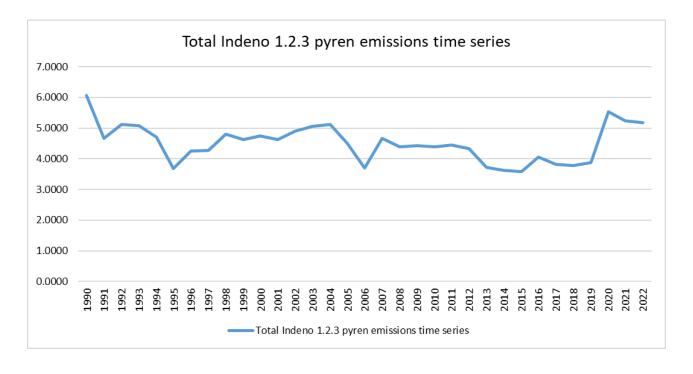


Figure 90. Total Indeno 1,2,3 pyren emissions time series from 1990 to 2022.

Table 59. Total Indeno 1,2,3 pyren emissions between sectors for years 1990 and 2022. Trends of dominant sources of Indeno 1,2,3 pyren emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Indeno 1,2,3 pyren Emission in [kt]		Trend		Share in National Total	
	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.0009	0.0006	-28.51%	1.38%	0.01%	0.01%
B Industry	0.1620	0.0778	-51.96%	59.69%	2.67%	1.50%
C Other Stationary Combustion	5.6140	4.8722	-13.21%	-1.47%	92.50%	94.17%
D Fugitive	0.1476	0.0240	-83.75%	-38.24%	2.43%	0.46%
E Solvents	0.0007	0.0021	215.18%	4.25%	0.01%	0.04%
F Road Transport	0.0152	0.0999	555.73%	7.81%	0.25%	1.93%
G Shipping + H Aviation + I Offroad	NA	NA	NA	NA	NA	NA
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.1286	0.0971	-24.47%	-5.21%	2.12%	1.88%
Total	6.0689	5.1737	-14.75%	-1.08%	100.00%	100.00%

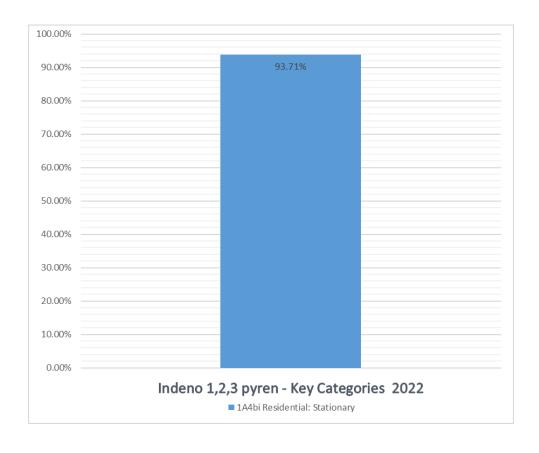


Figure 91. Key Categories assessments of Indeno 1,2,3 pyren emissions for 2022.

0.001

Indeno 1,2,3 pyren - Trend Categories 2022

0.017

0.024

0.000 0.005 0.010 0.015 0.020 0.025 0.030

In 1A4ai Commercial/institutional: Stationary

In 1A3bi Road transport: Passenger cars

In 1B1b Fugitive emission from solid fuels: Solid fuel transformation

In 1A4bi Residential: Stationary

Figure 92. Trends assessments of Indeno 1,2,3 pyren emissions for base year and 2022

2.4.24. PAHs - Total 1-4 PAHs

Total 1-4 PAHs emissions in 2022. was 30.3390 t, which is 1.94 % decrease compared to 2021. Compared to the 1990 baseline emissions of Total 1-4 PAHs is 37.30 % lower.

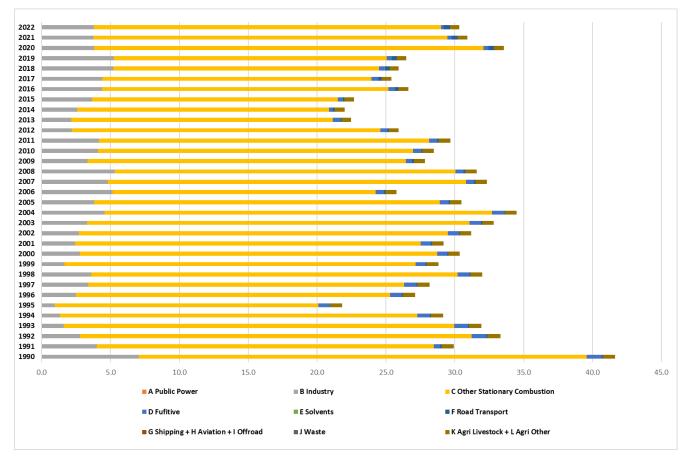


Figure 93. Distribution of Total 1-4 PAH between sectors for period 1990 – 2022.

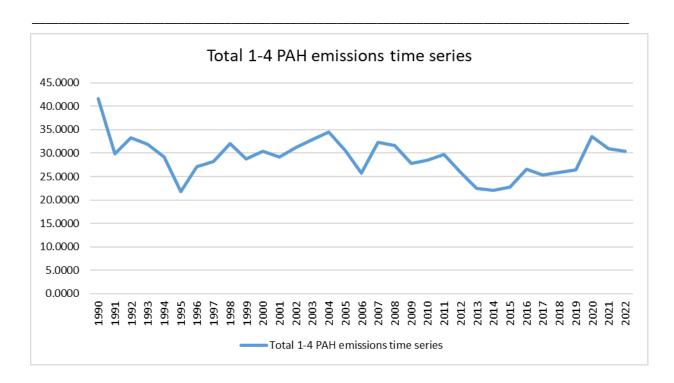


figure 94. Total 1-4 PAH emissions time series from 1990 to 2022.

Table 60. Total 1-4 PAH emissions between sectors for years 1990 and 2022. Trends of dominant sources of Total 1-4 PAH emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	Total 1-4 PAH Emission in [kt]		Trend		Share in National Total	
	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.0268	0.0186	-30.43%	0.94%	0.06%	0.06%
B Industry	7.0350	3.7718	-46.39%	1.19%	16.89%	12.43%
C Other Stationary Combustion	32.5056	25.2042	-22.46%	-2.03%	78.03%	83.08%
D Fugitive	1.1172	0.1816	-83.75%	-38.24%	2.68%	0.60%
E Solvents	0.0036	0.0113	215.18%	4.25%	0.01%	0.04%
F Road Transport	0.0690	0.4738	586.62%	8.23%	0.17%	1.56%
G Shipping + H Aviation + I Offroad	0.0024	0.0009	-62.61%	-8.00%	0.01%	0.00%
J Waste	0.0000	0.0000	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	0.8961	0.6768	-24.47%	-5.21%	2.15%	2.23%
Total	41.6557	30.3390	-27.17%	-1.91%	100.00%	100.00%

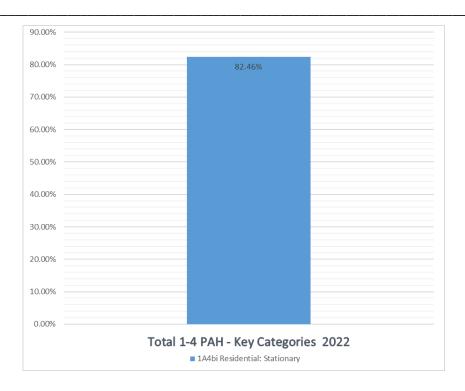


Figure 95. Key Categories assessments of Total 1-4 PAH emissions for 2022.

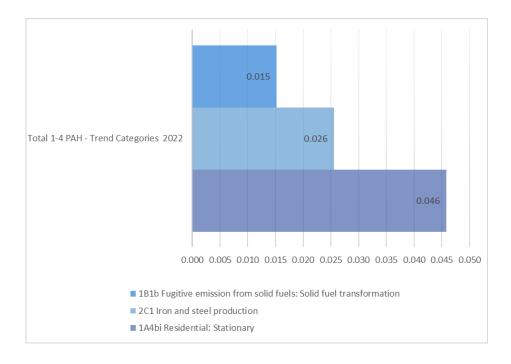


Figure 96. Trends assessments of Total 1-4 PAH emissions for base year and 2022

2.4.25. Emissions HCBs

HCBs emissions in 2022. was 2.1754 kg, which is 0.58 % increase compared to 2021. Compared to the 1990 baseline emissions of HCBs is 31.88 % lower.

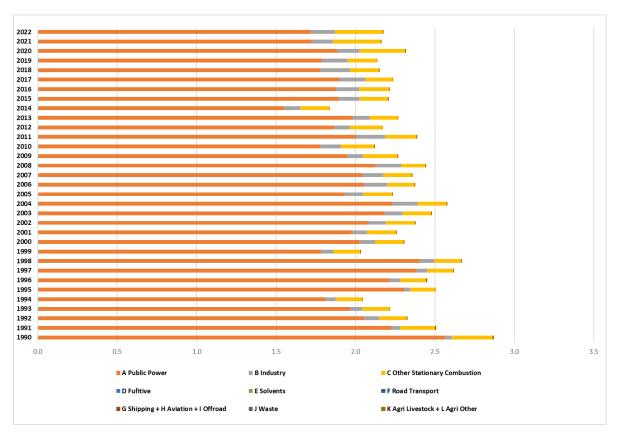


Figure 97. Distribution of HCB between sectors for period 1990 – 2022.

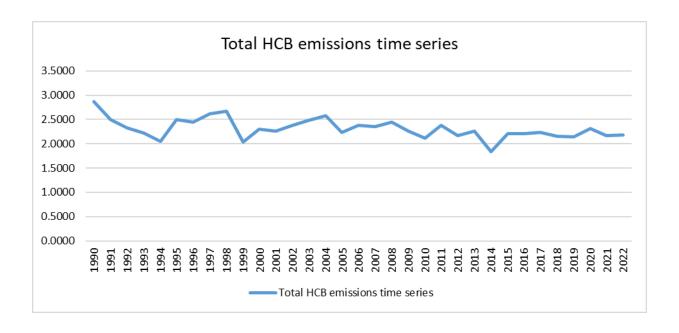


Figure 98.Total HCB emissions time series from 1990 to 2022.

Table 61. Total HCB emissions between sectors for years 1990 and 2022. Trends of dominant sources of HCB emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	HCB Emission in [kt]		Trend		Share in National Total	
	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	2.5606	1.7120	-33.14%	-0.60%	89.25%	78.70%
B Industry	0.0431	0.1567	263.78%	17.95%	1.50%	7.20%
C Other Stationary Combustion	0.2595	0.3035	16.95%	-0.10%	9.05%	13.95%
D Fugitive	NA	NA	NA	NA	NA	NA
E Solvents	NA	NA	NA	NA	NA	NA
F Road Transport	NA	NA	NA	NA	NA	NA
G Shipping + H Aviation + I Offroad	0.0056	0.0027	-52.50%	-9.52%	0.20%	0.12%
J Waste	0.0001	0.0005	396.65%	-18.49%	0.00%	0.02%
K Agri Livestock + L Agri Other	NA	NA	NA	NA	NA	NA
Total	2.8689	2.1754	-24.17%	0.59%	100.00%	100.00%

Figure 99. Key Categories assessments of HCB emissions for 2022.

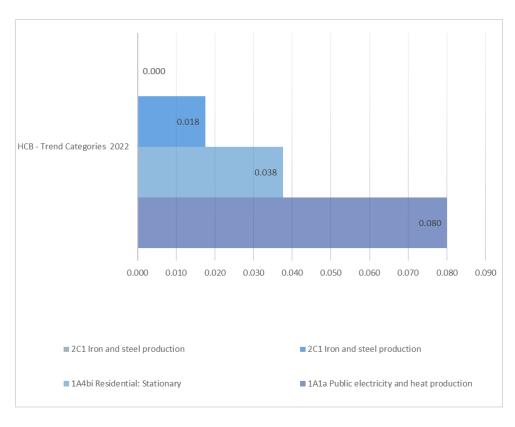


Figure 100. Trends assessments of HCB emissions for base year and 2022

2.4.26. Emissions PCBs

PCBs emissions in 2022. Was 700.8718 kg, which is 8.99 % decrease compared to 2021. Compared to the 1990 baseline emissions of PCBs is 20.45 % lower.

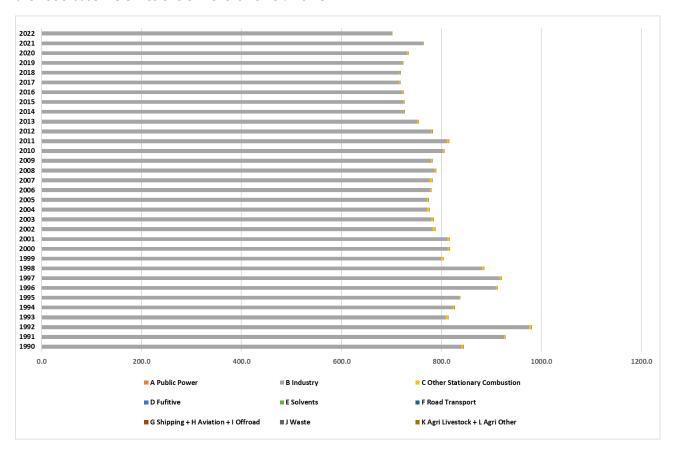


Figure 101. Distribution of PCB between sectors for period 1990 – 2022.

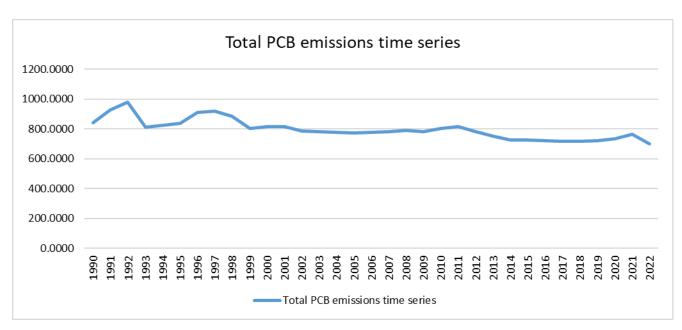


Figure 102. Total PCB emissions time series from 1990 to 2022.

Table 62. Total PCB emissions between sectors for years 1990 and 2022. Trends of dominant sources of PCB emissions compared to years 1990-2022 and 2021-2022. Share in National Total for years 1990 and 2022

NFR Category	PCB Emission in [kt]		Trend		Share in National Total	
	1990	2022	1990 - 2022	2021 - 2022	1990	2022
A Public Power	0.0013	0.0028	122.00%	41.17%	0.00%	0.00%
B Industry	840.1327	699.7055	-16.71%	-8.26%	99.52%	99.83%
C Other Stationary Combustion	4.0584	1.1511	-71.64%	-5.46%	0.48%	0.16%
D Fugitive	NA	NA	NA	NA	NA	NA
E Solvents	NA	NA	NA	NA	NA	NA
F Road Transport	NA	NA	NA	NA	NA	NA
G Shipping + H Aviation + I Offroad	0.0228	0.0108	-52.50%	-9.52%	0.00%	0.00%
J Waste	0.0003	0.0015	396.65%	-18.49%	0.00%	0.00%
K Agri Livestock + L Agri Other	NA	NA	NA	NA	NA	NA
Total	844.2155	700.8718	-16.98%	-8.25%	100.00%	100.00%

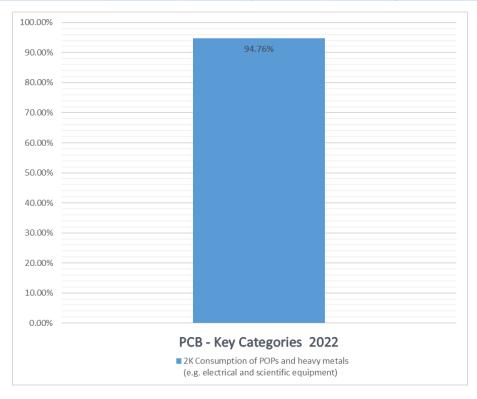


Figure 103. Key Categories assessments of PCB emissions for 2022.

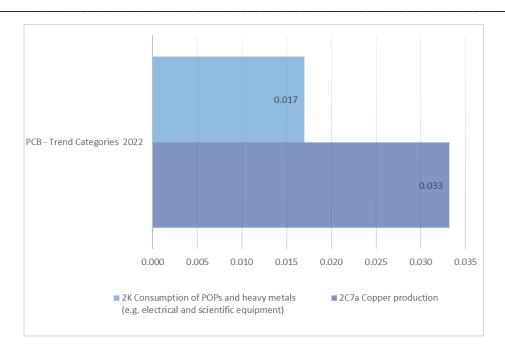


Figure 104. Trends assessments of PCB emissions for base year and 2022

SECTORAL METODOLOGIES

During 2015 SEPA implement project which have a very large impact on reporting for CLRTAP convention.

The aim of the project was to determine the national emission factors for most used fuels in Serbia. In this project, data were collected, primarily, for coal (lignite) mined in Serbia whose annual volume exceeding 30 million tons each year.

3. ENERGY (NFR 1)

This chapter gives an overview of category 1 A Stationary Fuel Combustion Activities. It includes information on completeness, methodologies, activity data, emission factors, recalculations and planned improvements.

Sector 1.Energy considers emissions originating from fuel combustion activities, as well as fugitive emissions from fuels:

1.A	Fuel Combustion Activities
1.A.1.a	Public electricity and heat production
1.A.1.b	Petroleum refining
1.A.1.c	Manufacture of solid fuels and other energy industries
1.A.2.a	Stationary combustion in manufacturing industries and construction: Chemicals: Iron and steel
1.A.2.b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals
1 A 2 c	Stationary combustion in manufacturing industries and construction: Chemicals
1 A 2 d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print
1 A 2 e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco
1 A 2 f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)
1A3ai(i)	International aviation LTO (civil)
1A3aii(i)	Domestic aviation LTO (civil)
1A3aii(ii)	Domestic aviation cruise (civil)
1A3bi	Road transport: Passenger cars
1A3bii	Road transport: Light duty vehicles
1A3biii	Road transport: Heavy duty vehicles and buses
1A3biv	Road transport: Mopeds & motorcycles
1A3bv	Road transport: Gasoline evaporation
1A3bvi	Road transport: Automobile tyre and brake wear
1A3bvii	Road transport: Automobile road abrasion
1A3c	Railways
1A3dii	National navigation (Shipping)
1A4ai	Commercial / institutional: Stationary
1A4bi	Residential: Stationary
1A4ci	Agriculture/Forestry/Fishing: Stationary
1.B	Fugitive emissions
1B1a	Fugitive emissions from solid fuels: Coal mining and handling
1B2ai	Fugitive emissions oil: Exploration, production, transport
1B2aiv	Fugitive emissions oil: Refining / storage
1B2av	Distribution of oil products
1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution and other)
1B2c	Venting and flaring (oil, gas, combined oil and gas)

1 A Fuel Combustion Activities

1 A 1 Energy Industries

1 A 1 a Public electricity and heat production

Methodology

The methodology used in this inventory for the emission calculation for category 1 A 1 a Public electricity and heat production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emissions are calculated by multiplying fuel consumption (in TJ) by emission factors. Fuel amounts related to direct emissions were subtracted from the amount of fuel from an energy balance based on fuel type and activities.

Emission factors

Emission factors used in emission calculation are from EMEP/EEA Inventory Guidebook 2019 except for lignite (brown coal). Based on the obtained data for the period 2000 - 2013 years on the sulfur content in coal and net calorific value is determined by the emission factor for sulfur in lignite. Applying equation for calculation emission factor from percentage of sulphur and net calorific value calculate mean value 1350 g/GJ for SOx in lignite which the main coal in Serbia. This number was applied for period 1990 – 2014.

During 2016 a detailed analysis of available data concerning the use of coal (lignite) in electricity and heat production, as well as the technical characteristics for coal has been carried out. It was found that the amount of sulfur in lignite is around 0.5%, but net calorific value is rather low, ranging between 6,000 - 7,000 kJ/kg of fuel.

Based on the available data, national emission factor for lignite was calculated and average value is 1350 g/GJ. Default value for this type of fuel in EMEP/EEA emission inventory guidebook 2019 is 1680 g/GJ.

Also new elementary lignite analysis was performed for the period 2015 – 2022 based on which a new national emission factor for this period was calculated and average value is 1162 g/GJ.

For all other fuels emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

During the preparation of the inventory, it was determined that there are two types of fuel oil - with share of 1% sulfur content and sulfur content with a share of 3%. Based on these data, the emission factor for fuel oil with 3% sulfur content and the amount of emitted sulfur dioxide were calculated.

Activity data

Sectors 1.A.1 Energy Industries include combustion of fuels in stationary sources.

Activity data for the Energy sector is the amount of consumed fuel by individual sector and are taken from the Serbian report to International Energy Agency for period.

Table 63. Activity data for sector-1 A 1 a

Year	Hard coal	Brown coal	Gaseou s fuels	Heavy Fuel Oil	Light oil-gas oil	Biomass
1990	4338476	377845784	21282561	10983200	0	0
1991	753504	331459896	29057850	21920000	0	0
1992	0	305741340	33957900	18160000	0	0
1993	0	293166638	21164400	8840000	0	0
1994	0	269866978	17667000	7000000	0	0
1995	0	344167993	19253700	7280000	0	0
1996	0	330392736	19978200	12240000	0	0
1997	0	355346494	22080600	16560000	0	0
1998	0	358361221	20568600	9120000	0	0
1999	0	265411585	14650200	10840000	0	0
2000	614878	301241482	15642000	9200000	0	0
2001	485610	294260477	20018700	9400000	0	0
2002	485610	310125589	26410500	3600000	0	0
2003	372439	324736788	27617400	3840000	0	0
2004	486360	332384768	35074800	2280000	0	0
2005	908900	287235007	18828900	11640000	298200	0
2006	655325	306070381	17169300	9480000	724200	0
2007	615300	304362925	19562400	9840000	681600	12000
2008	453822	316644158	20820600	7621767	911589	22000
2009	535054	290230650	18141300	9719896	1582596	62000
2010	0	264634947	22064400	7948898	306075	84000
2011	0	298973696	25830000	5848412	174900	90000
2012	0	278334248	26262000	6960434	131175	73000
2013	0	295731558	28786500	4242158	87450	157000
2014	0	230783508	27446400	3953856	131175	168000
2015	0	282610048	30999600	5012614	299964	191000
2016	0	279888609	30778200	4971527	171408	188000
2017	0	283332225	32997120	4712145	166437	176285
2018	0	265143199	33003094	4411653	194001	207783
2019	0	266638018	33251800	3623119	246316	180693
2020	0	281098518	34658726	3687974	285763	183839
2021	0	256833405	42793421	5471502	544748	324507
2022	0	255104816	43256642	5831587	639247	559449

Recalculations and other changes

From 2019, category 1A1a includes data used in calculations in category 1Bc Venting and Flaring.

A decrease of around -20% for all pollutants in 2013-2014 can be observed, due to large floods that hit the Republic of Serbia during 2014. This is the cause of reduced activity due to coal mining for energy production, that directly influences emissions.

In subcategory Brown Coal we have changed the emission factor for SOx for 2015, 2016, 2017, 2018, 2019, 2020, 2021 and 2022.

According to available information from thermal power plants, experts from the Faculty of Mechanical Engineering were able to calculate the Contry - specific emission factor for these five years for SOx.

Planned improvements

In the future, SEPA planned to report on higher Tier level.

1 A 1 b Petroleum refining

Sub-sector 1.A.1.b Petroleum refining takes into account consumptions of fossil fuels from two LCPs Oil refineries owned by legal entity NIS- Oil industry.

Methodology

The methodology used in this inventory for the emission calculation for category 1 A 1 b Petroleum refining is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

1.A.1.b			
Petrole	um refining		
2000	512550		
2001	3410718		
2002	3621717		
2003	3955657		
2004	4508524		
2005	3368386		
2006	2717382		
2007	2406119		
2008	2463834		
2009	2764820		
2010	3089182		
2011	2307484		
2012	1790029		
2013	2266534		
2014	1738913		
2015	2744436		
2016	3119682		
2017	2528778		
2018	2839464		
2019	2664555		

2020 2920809 2021 3227090 2022 4070858

Table 64. Activity data for sector-1 A 1 b Petroleum refining

Activity data

The activity data source for this category is Petroleum Industry of Serbia and Serbian report to International Energy Agency.

For now, all activity data for period 1990 – 1999 are not available.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.1.c Manufacture of solid fuels and other energy industries

Methodology

The methodology used in this inventory for the emission calculation for category 1 A 1 c Manufacture of solid fuels and other energy industries is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are national emission factors for lignite (brown coal)

Activity data

The activity data for this category are obtained from Serbian report to International Energy Agency for period 1990 – 2021. (Table 9.2.)

Table 65. Activity data for category 1.A 1 c

Year	GJ	Year	GJ
1990	36000424	2007	18256382
1991	15028640	2008	19246906
1992	35163602	2009	9518455
1993	32653136	2010	19512496
1994	30057280	2011	23119740
1995	25377908	2012	17774367
1996	27922530	2013	16508402
1997	28400714	2014	6552194
1998	27615126	2015	10848032
1999	23635952	2016	18052608
2000	23977512	2017	10808676
2001	24421540	2018	10715939
2002	25787780	2019	6912207
2003	27222332	2020	7125591
2004	27871296	2021	4471771
2005	21057174	2022	1830392
2006	19827558		

Recalculations and other changes

Activity data of solid fuels in subcategory 1A1c show a sharp decrease of -60% between 2013-2014, between 2014-2016 activity data increased by +66% each year, from 2016-2017 show a decrease of -40%. During 2014, large floods hit the Republic of Serbia, especially in the areas where the mines are

located. This is the cause of reduced activity due to coal mining for energy production, that directly influences emissions. Also, the use of steam locomotives in 2017 has been reduced. This is the cause of the reduction of emissions between 2016 and 2017.

Planned improvements

No planned improvements in the next period.

1.A.2 Manufacturing Industries and Construction

1.A.2.a	Iron and steel
1.A.2.b	Non-ferrous metals
1 A 2 c	1 A 2 c Stationary combustion in manufacturing industries and construction: Chemicals
	1 A 2 d Stationary combustion in manufacturing industries and construction: Pulp, Paper
1 A 2 d	and Print
	1 A 2 e Stationary combustion in manufacturing industries and construction: Food
1 A 2 e	processing, beverages and tobacco
1.A.2.f.i	Stationary combustion in manufacturing industries and construction: Other

1.A.2.a Stationary combustion in manufacturing industries and construction: Iron and steel

Methodology

The methodology used in this inventory for the emission calculation for category 1 A 2 a Stationary combustion in manufacturing industries and construction: Iron and steel is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Table 66. Activity data for category 1.A.2.a.

Year	Sinter (t)	Pellet (t)
1990	0	0
1991	0	0
1992	0	0
1993	0	0
1994	0	0
1995	0	0
1996	0	0
1997	0	0
1998	0	0
1999	0	0
2000	0	0
2001	0	0
2002	0	0
2003	0	0
2004	941349	641095
2005	1094502	889273
2006	1341834	1542287
2007	1137976	1338261
2008	1215427	1393685
2009	690020	973477
2010	773848	1208049
2011	967194	1058133
2012	336994	207266
2013	413968	235919
2014	624035	327470

2015	884550	623097
2016	384081	802219
2017	773232	1431960
2018	1113352	1552507
2019	1203368	1265650
2020	1011079	581744
2021	1153480	580834
2022	1131824	544795

Emission factors

Emission factors used in emission calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The sources for these data are World Steel Association for the period 1990 – 2003 and Iron and steel factory in Smederevo. (Table 9.2.)

Recalculations and other changes

For the years 2011-2017, CO-emissions from category 1.A.2.b show steep increases and decreases (2011-2012: -65%, 2013-2014: +51%, 2015-2016: -56%, 2016-2017:+101%). Reduced production due to the global crisis in steel production and the change in ownership structure influenced the significant reduction in emissions for the period 2011-2012. In this period, factory in Smederevo worked quietly with significantly reduced production. In the period from 2012 to 2016, we had the production of steel that was intended for domestic customers. During 2016, there was a change in the ownership structure, after which factory in Smederevo completely started operating since 2017.

There are no recalculations.

Planned improvements

No planned improvements in the next period.

1.A.2.b Stationary Combustion in manufacturing industries and construction: Non-ferrous metals

Secondary aluminium is mainly used by two companies which uses scrap as raw materials.

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Table 67. Activity data for category 1.A.2.b. in tones

Year	Primary copper production	Secondary copper production	Primary lead production	Secondary lead production	Secondary aluminium	Magnesium production
1990	151000	0	6000	0	0	5788
1991	134000	0	51000	0	0	5360
1992	135000	0	78000	0	0	4055
1993	51000	0	8000	0	0	0
1994	72000	0	13000	0	0	0
1995	78000	0	19000	0	0	2560
1996	104000	0	44000	0	0	3090
1997	113000	0	42000	0	0	3742
1998	94000	0	36000	0	0	3965
1999	50000	0	4000	0	0	1203
2000	44900	720	5000	5146	494	0
2001	32300	50	5000	5144	526	0
2002	34900	970	5000	5272	487	0
2003	13500	560	5000	4893	603	0

2004	11200	820	0	5395	514	0
2005	29300	1990	0	4666	269	523
2006	38900	2520	0	6435	3293	181
2007	28800	2490	0	8107	10298	1649
2008	31100	2640	0	12001	10601	1478
2009	26300	1140	0	14036	9013	1341
2010	21200	950	0	24033	13867	933
2011	25740	2708	0	26148	12104	1582
2012	32166	2536	0	18383	12888	1387
2013	32408	3432	0	0	13529	2026
2014	31255	1921	0	0	13436	1800
2015	42439	2207	0	0	11941	3894
2016	59078	2231	0	0	13864	4131
2017	67752	1469	0	0	13989	4202
2018	65189	2219	0	0	15284	4123
2019	78091	5092	0	0	12989	3045
2020	60976	9935	0	0	10869	1287
2021	45649	20346	0	0	8749	1895
2022	17543	75730	0	0	6629	1819

Emission factors

Emission factors used in emission calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

Activity data are given in chapter Industry.

Recalculations and other changes

An extrapolation of the data for secondary aluminum in 2021 and 2022 was made because production exists, but the plants did not provide us with the data.

Planned improvements

No planned improvements in the next period.

1.A.2.c. Stationary combustion in manufacturing industries and construction: Chemicals

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

During the preparation of the inventory, it was determined that there are two types of fuel oil - with share of 1% sulfur content and sulfur content with a share of 3%. Based on these data, the emission factor for fuel oil with 3% sulfur content and the amount of emitted sulfur dioxide were calculated.

Activity data

The activity data for category Stationary combustion in manufacturing industries and construction: Chemicals are obtained from Serbian report to International Energy Agency for period 1990 – 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planed improvements in the next period.

1.A.2.d Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

During the preparation of the inventory, it was determined that there are two types of fuel oil - with share of 1% sulfur content and sulfur content with a share of 3%. Based on these data, the emission factor for fuel oil with 3% sulfur content and the amount of emitted sulfur dioxide were calculated.

Activity data

The activity data for this category are obtained from National Energy balance for period 1990 – 2011. Data for period 2012 -2022 were obtained from Statistical Office of Serbia, which is now responsible for development of National energy balances.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.2.e Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

During the preparation of the inventory, it was determined that there are two types of fuel oil - with share of 1% sulfur content and sulfur content with a share of 3%. Based on these data, the emission factor for fuel oil with 3% sulfur content and the amount of emitted sulfur dioxide were calculated.

Activity data

The activity data for this category are obtained from National Energy balance for period 1990 – 2022. Data from 2015 were obtained from Statistical Office of Serbia, which is now responsible for development of National energy balances.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.2.f

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The activity data for this category are obtained from Statistical Office of Serbia.

This category included:

- Plaster (gysum) manufacture
- Lime production
- Cement production
- Roadstone coating (asphalt) plants
- Glass (flat, container, domestic, special, cont. filament glass fibre)
- Bricks and tiles
- Fine ceramic materials

Table 68. Activity data for category 1.A.2.f

				·			
Year	Plaster (gysum)	Lime production	Cement	Roadstone	Glas	Bricks and	Fine ceramic
	manufacture		production	coating (asphalt)		tiles	materials
				plants			
1990	45541	636238	2577423	423104	141477	3193365	63199
1991	42595	649870	2290216	335604	157140	3270294	60386
1992	47865	542949	1933946	135259	134077	2871888	51402
1993	0	318252	1034010	17935	91220	1791977	32029
1994	40411	365523	1531852	0	76007	1937574	34495
1995	40342	410296	1611584	47537	88256	2088974	34041
1996	44257	447224	2094644	122470	85439	2581626	43240
1997	32124	453131	1910761	118360	70542	2779457	38304
1998	27788	577465	2140018	98481	72605	2959464	53815
1999	33962	371991	1496184	40911	44391	2147548	41723
2000	46651	365900	2011150	73082	63000	2952348	51729
2001	58045	324600	2297100	86538	64000	3083479	55247
2002	54937	394900	2276200	124560	62000	2880620	56251
2003	42261	345000	1971250	92486	47000	2391945	53599
2004	0	330300	2128000	233153	50200	2562275	58472
2005	0	372000	2162200	308943	47900	2333121	46320
2006	0	377000	2436750	345565	48900	2351458	56632
2007	0	320200	2542200	350634	64700	2221684	53688
2008	0	292300	2700850	291890	54500	2131829	57434
2009	0	251100	2111850	204734	42400	1739740	58816
2010	0	239500	2023500	197325	42200	1526172	73343

2011	0	273715	1989854	172005	35565	1377029	52120
2012	0	238556	1739175	123824	26361	1285843	90281
2013	0	279122	1512117	107243	33937	1309191	58001
2014	0	215050	1525164	300462	48992	1249377	62926
2015	0	189350	1571701	456629	49287	1674200	69800
2016	0	205472	1710807	489080	44151	1754000	0
2017	0	206624	1812305	610384	49837	1783500	0
2018	0	210700	1987876	703727	48726	1748700	0
2019	0	195444	2043898	920430	55169	1731300	0
2020	0	177764	2245788	721637	61181	1847300	0
2021	0	136745	2479676	778643	53233	2218500	0
2022	0	208708	2493376	730666	54973	2160500	0

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.2.gv ii Mobile Combustion in manufacturing industries and construction:

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The activity data for this category are obtained from National Energy balance for period 1990 – 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1 A 2 gv iii Stationary combustion in manufacturing industries and construction: Other

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

This category included:

- Non-Metallic Minerals
- Transport equipment
- Machinery
- Mining and Quarrying
- Wood and wood Products
- Textiles and leather
- Non-specified (industry).
- Autoproducers

The activity data for this category are obtained from National Energy balance for period 1990 – 2022.

Recalculations and other changes

1A2gviii. We changed the data on Autoproducers final emergy consuption for subcategories gaseous fuels, biofuels and other fuels in 2021, because the data in Energy Balance has been changed.

1A2gviii We changed the data on Non-metallic minerals, Machinery, Mining and quarring, Wood and wood products, Textiles and leather, Not elsewhere specified (Industry) for subcategory Biofuels in 2021, because the data in Energy Balance has been changed.

Planned improvements

No planned improvements in the next period.

1.A.3 Transport

This category include:

- 1 A 3 a i (i) International aviation (LTO)
- 1.A.3.b.i Passenger cars
- 1.A.3.b.ii Light-duty trucks
- 1.A.3.b.iii Heavy-duty vehicles including buses
- 1.A.3.b.iv Motorcycles
- 1 A 3 b v Road transport: Gasoline evaporation
- 1.A.3.b.vi Road vehicle tire and brake wear
- 1.A.3.b.vii Road surface wear
- 1.A.3.c Railways
- 1 A 3 d ii National navigation (Shipping)

Fuels consumption in sector 1.A.3 takes into account fuels consumption in sub-sectors: 1.A.3.a Air transport (1.A.3.a.i (i) International LTO and 1.A.3.a.ii (i) Domestic LTO) (data for period 1990-1999 are not available), 1.A.3.c Railways, 1.A.3.d.ii National navigation.

The emissions for Air transport were calculated using Tier 1 approach based on data provided by Airport "Nikola Tesla"in Belgrade, airport "Konstantin Veliki" in Nis and airport "Morava" in Kraljevo.

For calculation of emissions of pollutants from category road transport, due to the lack of precise data, an extrapolation was made for the year 2022.

For calculation of emissions of pollutants for previous years, Road transport was done using COPERT 5 version 5.2.2 (Tier 3 method), which requires a very detailed set of data (contained in the vehicle base) on type of vehicles (passenger cars, light duty vehicles, heavy duty vehicles, buses, mopeds, motorcycles)

1.A.3.a Aviation

1.A.3.a ii (i) Civil aviation (Domestic, LTO) and 1.A.3.a i (i) International aviation (LTO)

	Civil aviat	ion			
1.A.3 a	(Domestic, LTO)	(International, LTO)			
1990	19822	24848			
1991	16872	21870			
1992	9488	7714			
1993	8534	0			
1994	5446	1372			
1995	17672	13204			
1996	8314	17212			
1997	9212	18886			
1998	10996	17826			
1999	6052	4168			
2000	8790	10890			
2001	8170	16172			
2002	8660	20212			
2003	9062	23422			
2004	8710	27706			
2005	8220	29394			
2006	4838	37522			
2007	736	42712			
2008	232	44222			
2009	64	40600			
2010	92	44068			
2011	82	46023			
2012	83	46468			
2013	85	47737			
2014	105	59132			
2015	106	59453			
2016	107	59970			
2017	102	57408			
2018	125	70171			
2019	129	72355			
2020	67	37474			
2021	95	53083			
2022	128	71659			
2022	120	/1033			

Table 69. The activity data for sector 1.A.3.a ii (i) Domestic aviation and 1.A.3.a i (i) International aviation

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

Activity data are taken from airport "Nikola Tesla" in Belgrade, airport "Konstantin Veliki" in Nis and airport "Morava" in Kraljevo. Consumption of fuel was taken from Statistical Office of the Republic of Serbia (SORS).

Recalculations and other changes

No recalculations were performed.

Planned improvements

Improvements in terms of obtaining precise data are planned in the next submission.

1.A.3.a ii (ii) Domestic aviation cruise (civil)

Domestic aviation cruise (civil)			
1.A.3 a	(Domestic, LTO)	1.A.3 a	(Domestic, LTO)
1990	363147	2007	43448
1991	-4962	2008	44454
1992	67808	2009	40664
1993	-41	2010	44160
1994	4375	2011	46105
1995	22527	2012	46551
1996	54941	2013	47822
1997	56819	2014	59237
1998	52222	2015	59559
1999	18569	2016	60077
2000	47764	2017	57510

Table 70. The activity data for sector Domestic aviation cruise (civil)

2001	40918	2018	70296
2002	28872	2019	72484
2003	32484	2020	37541
2004	36416	2021	53178
2005	37614	2022	71787
2006	42360		

1.A.3.a ii (ii)

Methodology

for the emission

calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

Activity data are taken from airport "Nikola Tesla" in Belgrade, airport "Konstantin Veliki" in Nis and airport "Morava" in Kraljevo. Consumption of fuel was taken from Statistical Office of the Republic of Serbia (SORS).

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.3.b Road transport

This category includes:

•	1.A.3.b.i	Passenger cars
•	1.A.3.b.ii	Light-duty trucks

1.A.3.b.iii Heavy-duty vehicles including buses

■ 1.A.3.b.iv Motorcycles

1 A 3 b v
 Road transport: Gasoline evaporation
 1.A.3.b.vi
 Road vehicle tyre and brake wear

1.A.3.b.vii Road surface wear

1.A.3.b (i-v) Road transport

Methodology

The COPERT 5 version 5.5 was used for air emission calculation from sub-sectors 1 A 3 b (i-v) Road transport for the period 2016-2021. For the previous period (1990-2015) the COPERT 5 version 5.2.2e was used. The COPERT calculates emission factors according to driving conditions data (the average speed per vehicle type and per road).

The existing fuel database in Serbia recognizes significantly more types of fuel than requirements of the COPERT 5 model. During the application of the COPERT 5 model, it was necessary to connect fuel types from the existing database with the requirements of the COPERT 5 model. As additional information, leaded gasoline was phased out in Serbia in 2010. Since then, only unleaded petrol has been used.

The COPERT 5 model also requires the entry of traffic data, which implies that for each category of vehicle is determined:

- % participation in peak hours;
- % participation outside peak hours;
- % participation in open roads;
- % of participation on highways;
- Average speed at peak time;
- Average speed outside peak hours;
- Average speed on open roads;
- Average speed on the highway.

For the needs of the COPERT 5 model, an assessment of participation in traffic flow, while the average speed is taken from the website of the Agency for traffic Safety of the Republic of Serbia.

Emission factors

In a case of road transport, COPERT program contains all necessary emission factors, the methodology and calculation algorithm to estimate total road-transport emissions on a national, regional or urban level at a year to daylong time resolution.

The COPERT calculates emission factors according to driving conditions data (the average speed per vehicle type and per road), fuel variables and climate conditions (average monthly temperatures data).

Activity data

For the calculation, an extrapolation was made for the year 2022. Activity data were obtained from the Ministry of Internal Affairs of the Republic of Serbia, Traffic Police from 1990 to 2021 (Confidential data).

Recalculations and other changes

Recalculation was made for period 2016-2021. Previously, extrapolation was made for these years due to lack of activity data.

Planned improvements

There is no planned improvement.

1 A 3 b v Road transport: Gasoline evaporation

Methodology

The COPERT 5 version 5.5 was used for the emission calculation for this category for the period 2016-2021. The methodology used for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019 for the previous period (1990-2015).

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019, as well as COPERT emission factors.

National emission factors have not been developed.

Activity data

For the calculation, an extrapolation was made for the year 2022. Activity data were obtained from the Ministry of Internal Affairs of the Republic of Serbia, Traffic Police from 1990 to 2021 (Confidential data).

Recalculations and other changes

No recalculations were performed..

Planned improvements

No planned improvements in the next period.

1.A.3.b.vi Road vehicle tire and brake wear

Methodology

The COPERT 5 version 5.5 was used for the emission calculation for this category for the period 2016-2021. The methodology used for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019 for the previous period (1990-2015).

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019, as well as COPERT emission factors.

National emission factors have not been developed.

Activity data

For the calculation, an extrapolation was made for the year 2022. Activity data were obtained from the Ministry of Internal Affairs of the Republic of Serbia, Traffic Police from 1990 to 2021 (Confidential data).

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.3.b.vii Road surface wear

Methodology

The COPERT 5 version 5.5 was used for the emission calculation for this category for the period 2016-2021. The methodology used for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019 for the previous period (1990-2015).

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019, as well as COPERT emission factors.

National emission factors have not been developed.

Activity data

For the calculation, an extrapolation was made for the year 2022. Activity data were obtained from the Ministry of Internal Affairs of the Republic of Serbia, Traffic Police from 1990 to 2021 (Confidential data).

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.3.c Railways

Methodology

The methodology used in this inventory for the emission calculation for category 1 A 3 c Railways is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

	1.A.3.c Railways		
year	tone fuel	year	tone fuel
1990	30000	2007	12000
1991	39000	2008	11000
1992	39000	2013	10000
1993	17000	2010	11000
1994	14000	2011	10000
1995	15000	2012	8500
1996	18000	2013	8700
1997	17000	2014	9000
1998	16000	2015	10000
1999	13000	2016	10000
2000	11000	2017	10000
2001	12000	2018	11000
2002	13000	2019	12000
2003	13000	2020	10000
2004	14000	2021	12000
2005	13000	2022	11000
2006	13000		

Table 71. Total amount of fuel consumption in railway sector in Serbia in time period 1990 – 2022.

Activity data

For the calculation, activity data were obtained from the Statistical office of Serbia from 1990 to 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period

1.A.3.d. Navigation

1 A 3 d ii National navigation (Shipping)

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The main source for activity data concerning total amount of fuel consumption (t) is SORS.

1.A.3.d. ii National navigation - using bunker fuel oil			
year	tone fuel	year	tone fuel
1990	40000	2007	17000
1991	27000	2008	18000
1992	26000	2009	17000
1993	5000	2010	14000
1994	6000	2011	11000
1995	8000	2012	7600
1996	19000	2013	8000
1997	23000	2014	8000
1998	25000	2015	9000
1999	16000	2016	9000
2000	19000	2017	7000
2001	19000	2018	6000
2002	19000	2019	6000
2003	18000	2020	5000
2004	17000	2021	21000
2005	17000	2022	19000
2006	18000	_	

Table 72. Activity data for category 1 A 3 d ii National navigation(Shipping) in Serbia in time period 1990 - 2022

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.4 Other Sectors (commercial and residential)

This category comprise:

- 1.A.4. a i Commercial / institutional: Stationary
- 1.A.4. b i Residential: Stationary plants
- 1.A.4. c i Agriculture/Forestry/Fishing: Stationary

Fuels consumptions in sector 1.A.4 takes into account fuels consumption in following sub-sectors 1.A.4.a.i Commercial/Institutional (stationary), 1.A.4.b.i Residential (stationary), 1.A.4.c.i Agriculture/Forestry/Fishing (stationary).

1.A.4. a i Commercial / institutional: Stationary

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions was calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The activity data for this category are obtained from National Energy balance for period 1990 – 2022. Data from 2011 were obtained from Statistical Office of Serbia, which is now responsible for development of National energy balances.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.4. a ii Commercial / institutional: Mobile

This category is included in 1 A 3.

1.A.4. b i Residential: Stationary plants

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The activity data for this category are obtained from National Energy balance for period 1990 – 2022. Data from 2011 were obtained from Statistical Office of Serbia, which is now responsible for development of National energy balances.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.A.4.b ii Residential: Household and gardening (mobile)

This category is included in 1 A 3.

1.A.4.c i Agriculture/Forestry/Fishing: Stationary

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions for this category were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The activity data for this category are obtained from National Energy balance for period 2005 - 2010. Data from 2011 were obtained from Statistical Office of Serbia, which is now responsible for development of National energy balances. All missing data were collected to fill time series.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements.

1.A.4.c ii Agriculture/Forestry/Fishing: Off-road vehicles and other machinery

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions for this category were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The activity data for this category are obtained from National Energy balance which were available starting from 2007.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements.

1.A.4.c iii Agriculture/Forestry/Fishing: National fishing

This category is included in 1 A 3.

1.A.5.a Other stationary (including military)

This category is included in 1 A 4 a i.

1.A.5.b Other, Mobile (including military, land based and recreational boats)

This category is included in 1 A 3.

1.B Fugitive emission

1.B.1.a Fugitive emission from solid fuels: Coal mining and handling

Methodology

The methodology used in this inventory for the emission calculation for fugitive emissions from coal mining and handling is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

1.B.1.a			
Coal mining and handling			
	kg/	Mg	
1990	43778000	2007	37065000
1991	30221000	2008	38585000
1992	38385000	2013	38350000
1993	35982000	2010	37864000
1994	37121000	2011	41574000
1995	39715000	2012	38728000
1996	37008000	2013	40842000
1997	41618000	2014	30118000
1998	42480000	2015	38141000
1999	29000000	2016	38849000
2000	32557000	2017	39774000
2001	31049000	2018	37631000
2002	31622000	2019	38878000
2003	33356000	2020	39666000
2004	34177000	2021	36415000
2005	34993000	2022	34917000
2006	36785000	·	

Table 73. Total amount of coal mined in Serbia in the time period 1990 – 2022.

Emission factors

Emission factors used in emission calculation from coal mining and handling are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019, Table 3-1. (Table 3-1 Tier 1 emission factors for source category 1.B.1.a Coal mining and handling). National emission factors have not been developed.

Activity data

The source for activity data concerning coal mining and handling is SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

In the catagory 1B1a (Coal mining and handling) for the input data we use the Energy Balance. We have no official data for open cast mining and underground mining. This issue is a part of the National CLRTAP Improvement plan.

1.B.1. c Other fugitive emissions from solid fuels

This category does not occurred in Serbia.

1.B.2 Oil and natural gas

This category comprises:

1.B.2.a.i	Oil – Exploration, production, transport
1.B.2.a.iv	Refining/storage
1.B.2.a.v	Distribution of oil products
1.B.2.b	Natural gas
1.B.2.c	Venting and flaring
1.B.2.a.i	Exploration, production, transport

Methodology

The methodology used in this inventory for the emission calculation for fugitive emissions from oil exploration, production and transport is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

	1.B.2.ai		
Explor	ation, prod	luction,	transport
	Mg	oil	
1990	1063000	2007	640000
1991	1100000	2008	636000
1992	1165000	2013	663000
1993	1148000	2010	856000
1994	1078000	2011	1020490
1995	1066000	2012	1124794
1996	1030000	2013	1163988
1997	979000	2014	1112303
1998	913000	2015	1026686
1999	705000	2016	933884
2000	805000	2017	893000
2001	746000	2018	880000
2002	682000	2019	854000
2003	671000	2020	831000
2004	653000	2021	811000
2005	648000	2022	801000
2006	654000		

Table 74. Total amount of oil explored, product and transport in Serbia in the time period 1990 – 2022.

Emission factors

Emission factors used in emission calculation from oil exploration, production and transport are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019, Table 3-1. (Table 3-1 Tier 1 emission factors for source category 1.B.2.a.i Exploration, production).

National emission factors have not been developed.

Activity data

The source for activity data concerning oil exploration, production and transport is SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.B.2.a.iv Refining / storage

Methodology

The methodology used for calculation of emissions for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

	1.B.2.a.iv		
	Refining/storage		
	kg,	/Mg crude	e oil
1990	4725651	2007	3248923
1991	3485539	2008	3157293
1992	2362331	2013	2880184
1993	1090288	2010	2856846
1994	1326861	2011	2359000
1995	1201986	2012	2142308
1996	2369108	2013	2747370
1997	3197544	2014	2613246
1998	3033429	2015	2935549
1999	816661	2016	3103762
2000	999341	2017	3332749
2001	2577170	2018	3557471
2002	3274015	2019	3138713
2003	3762698	2020	3320449
2004	3920610	2021	3584986
2005	3113136	2022	4131974
2006	3132000		

Table 75. Activity data for category 1.B.2.a.iv Refining / storage in Serbia in time period 1990 - 2022

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

The activity data for this category are obtained from National Energy balance for period 1990 - 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements.

1.B.2.a.v Distribution of oil products

Methodology

The methodology used in this inventory for the emission calculation for fugitive emissions from coal mining and handling is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

1.B.2.a.v			
	Distribution of	oil produc	ts
	kg/N	Лg	
1990	2500000	2007	2481000
1991	2296000	2008	2444000
1992	1646000	2013	2209000
1993	768000	2010	2114000
1994	716000	2011	1717000
1995	740000	2012	1616000
1996	936000	2013	2165000
1997	1826000	2014	2239000
1998	1340000	2015	2393902
1999	682000	2016	2482231
2000	913000	2017	2658813
2001	1446000	2018	2874262
2002	1829000	2019	2678192
2003	1919000	2020	2705027
2004	2591000	2021	2959652
2005	2551000	2022	3428015
2006	2469000		

Table 76. Activity data for category 1.B.2.a.v Distribution of oil products in Serbia in time period 1990 - 2022

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

Activity data for this category is provided by Oil Industry Serbia.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.B.2.b Natural gas

Methodology

The methodology used in this inventory for the emission calculation for fugitive emissions from natural gas exploration, production and transport is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation from natural gas exploration, production and transport are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

The source for activity data concerning natural gas exploration, production and transport is SORS.

1.B.2.b			
	Natural gas		
		m3 gas	
1990	646000000	2007	270000000
1991	749000000	2008	275000000
1992	846000000	2013	279000000
1993	962000000	2010	424000000
1994	823000000	2011	616381000
1995	907000000	2012	672137000
1996	670000000	2013	660406000
1997	688000000	2014	630868000
1998	731000000	2015	626118000
1999	679000000	2016	595346000
2000	729000000	2017	548000000
2001	507000000	2018	506000000
2002	400000000	2019	477000000
2003	364000000	2020	448000000
2004	317000000	2021	401000000
2005	282000000	2022	373000000
2006	280000000		

Table 77. Total amount of natural gas explored, product and transport in Serbia in the period 1990 – 2022

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

1.B.2.c Venting and flaring

Methodology

The methodology used in this inventory for the emission calculation for fugitive emissions from coal mining and handling is in accordance with the

EMEP/EEA Emission Inventory Guidebook 2019.

1.B.2.c	
Venting and flaring	
m3 refi	nery feed
2000	10842
2001	14659
2002	23015
2003	17612
2004	20045
2005	24188
2006	26392
2007	22279
2008	29430
2013	21456
2010	16770
2011	6998
2012	3974
2013	3696
2014	5247

2015	5114
2016	4914
2017	7357
2018	7590
2019	0
2020	0
2021	0
2022	0

Table 78. Activity data for category Venting and flaring (m₃)

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission

factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

The activity data were obtained by Oil Industry Serbia. For this reporting year the data for period 1990 – 2000 were not available.

Recalculations and other changes

From 2019, these data are included in category 1Aa Public electricity and heat production.

Planned improvements

No planned improvements in the next period.

1.B.2.d Other fugitive emissions from geothermal energy production, peat and other energy extraction not included in 1.B.2.d

This category in not estimated.

4. INDUSTRIAL PROCESSES AND PRODUCTS USE (NFR 2)

This category comprises:

2.A.1	Cement production
2.A.2	Lime production
2.A.3	Glass production
2.A.5.a	Quarrying and mining of minerals other than coal
2.A.5.b	Construction and demolition
2.A.5.c	Storage, handling and transport of mineral products
2.B.1	Ammonia production
2.B.2	Nitric acid production
2.B.10a	Other chemical industry
2.C.1	Iron and steel production
2.C.3	Aluminium production
2.C.4	Magnesium production
2.C.5	Lead production
2.C.6	Zinc production
2.C.7.a	Copper production
2.D.3.a	Domestic solvent use including fungicides
2.D.3.b	Road paving with asphalt
2.D.3.c	Asphalt roofing
2.D.3.d	Coating applications
2.D.3.e	Degreasing
2.D.3.f	Dry cleaning
2.D.3.g	Chemical products
2.D.3.h	Printing
2.D.3.i	Other solvent use

- 2.H.1 Pulp and paper industry
- 2.H.2 Food and beverages industry2.I Wood processing
- 2.I Wood processing2.K Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)

2.A Mineral industry

2.A.1 Cement production

Methodology

The methodology used in this inventory for the emission calculation for cement production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.A.1					
	Clinker production				
1990	2577423	2007	2542200		
1991	2290216	2008	2700850		
1992	1933946	2013	2111850		
1993	1034010	2010	2023500		
1994	1531852	2011	1989854		
1995	1611584	2012	1739175		
1996	2094644	2013	1512117		
1997	1910761	2014	1525164		
1998	2140018	2015	1571701		
1999	1496184	2016	1710807		
2000	2011150	2017	1812305		
2001	2297100	2018	1987876		
2002	2276200	2019	2043898		
2003	1971250	2020	2245788		
2004	2128000	2021	2479676		
2005	2162200	2022	2493376		
2006	2436750				

Table 79. Total amount of clinker production in Serbia in the time period 1990 – 2022.

Emission factors

Emission factors used in emission calculation from clinker production are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The activity data on clinker production are calculated according to cement production from Annual Statistical Reports.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.A.2 Lime production

Methodology

The methodology used in this inventory for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.A.2			
	Lime pr	oduction	(Mg)
1990	636238	2007	320200
1991	649870	2008	292300
1992	542949	2013	251100
1993	318252	2010	239500
1994	365523	2011	273715
1995	410296	2012	238556
1996	447224	2013	279122
1997	453131	2014	215050
1998	577465	2015	189350
1999	371991	2016	205472
2000	365900	2017	206624
2001	324600	2018	210700
2002	394900	2019	195444

2003	345000	2020	177764
2004	330300	2021	136745
2005	372000	2022	208708
2006	377000		

Table 80. Total amount of lime production in Serbia in the time period 1990–2022

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

The activity data on lime production are collected from Annual Statistical Reports.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.A.3 Glass production

Methodology

The methodology used in this inventory for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

The activity data on lime production are collected from Annual Statistical Reports.

Recalculations and other changes

No recalculations were performed.

2.A.3				
	Glass production			
		(t)		
1990	141477	2007	64700	
1991	157140	2008	54500	
1992	134077	2013	42400	
1993	91220	2010	42200	
1994	76007	2011	35565	
1995	88256	2012	26361	
1996	85439	2013	33937	
1997	70542	2014	48992	
1998	72605	2015	49286	
1999	44391	2016	44151	
2000	63000	2017	49837	
2001	64000	2018	48726	
2002	62000	2019	55169	
2003	47000	2020	61181	
2004	50200	2021	53233	
2005	47900	2022	54973	
2006	48900			

Table 81. Total amount of glass production in Serbia in the time period 1990–2022

Planned improvements

No planned improvements in the next period.

2.A.4 Soda ash production and use

This category does not occurred in Serbia.

2.A.5 a Quarrying and mining of minerals other than coal Methodology

The methodology used in this inventory for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

2.A.5 a			
Quarryir	ng and mining of	minerals o	ther than coal
	(†	t)	
1990	26483000	2007	12165978
1991	25758000	2008	14404154
1992	23085000	2013	4455598
1993	18189000	2010	14538052
1994	17935000	2011	16480621
1995	21038657	2012	18604862
1996	21286987	2013	20525373
1997	21878747	2014	20799735
1998	21545986	2015	21252026
1999	16591350	2016	22171687
2000	14057685	2017	21747781
2001	8046340	2018	19977040
2002	8652308	2019	20719494
2003	6253038	2020	22631000
2004	8609540	2021	27797000
2005	10661013	2022	37767000
2006	11061591		

Table 82. Total amount of quarrying and mining of minerals other tan coal in Serbia in the time period 1990–2022

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

	2.A.5 b			
Co	nstruction a		olition	
	(Mg as	phalt)		
1990	3204702	2007	1422055	
1991	2156830	2008	1554431	
1992	1860111	2013	1405891	
1993	1365006	2010	1333653	
1994	1260746	2011	1266883	
1995	1055803	2012	1038503	
1996	1082499	2013	935175	
1997	1049590	2014	810301	
1998	908380	2015	749064	
1999	922431	2016	782841	
2000	853719	2017	1018066	
2001	865515	2018	1336000	
2002	896002	2019	1962000	
2003	1185141	2020	1858000	
2004	1299132	2021	2161000	
2005	1319767	2022	2144000	
2006	1393052			

2.A.5 b Construction and demolition

Methodology

The methodology used in this inventory for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Table 83. Total amount of asphalt for road paving in Serbia in the time period 1990 - 2022

Emission factors

Emission factors used in emission calculation for this category are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2016. The emission factor for PM2.5 is 0.0086, for PM 10 0.086 and for TSP 0.29.

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

For now we do not have activity data about construction of houses (detached single family, detached two family and single family terraced), construction of apartments (all types), non-residential construction. When we obtain these data we will calculate the emissions for all activities.

2 A 5 c Storage, handling and transport of mineral products

Methodology

The methodology used in this inventory for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.A.5 c			
Stora	age, handling an	d transport	of mineral
	produ	ucts (t)	
1990	4150544	2007	2923542
1991	3990420	2008	3688837
1992	4054776	2013	4030042
1993	1554452	2010	4436775
1994	1980214	2011	3170220
1995	1939669	2012	1867001
1996	1730000	2013	1193438
1997	1723000	2014	2035192
1998	1523000	2015	1908022
1999	999000	2016	6778890
2000	1249000	2017	1880000
2001	1061635	2018	2169000
2002	1997211	2019	2794000
2003	2039896	2020	3882000
2004	1756374	2021	7514000
2005	2479159	2022	5524000
2006	2684449		

Table 84. Total amount of Storage, handling and transport of mineral products in the time period 1990 – 2022

Emission factors

Emission factors used in emission calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

The recalculation was done due to new data for 2021 from the

statistical yearbook

Planned improvements

No planned improvements.

2.B Chemical industry

This category comprises:

- 2.B.1 Ammonia production
- 2.B.2 Nitric acid production
- 2.B.5.a Other chemical industry

2.B.1				
	Ammonia production (t NH3)			
1990	178745	2007	104000	
1991	170237	2008	57000	
1992	147748	2013	64000	
1993	99897	2010	102000	
1994	158518	2011	161000	
1995	135401	2012	170000	

1996	235070	2013	202000
1997	235183	2014	109000
1998	171640	2015	89000
1999	56645	2016	73000
2000	70000	2017	207990
2001	80000	2018	108911
2002	140000	2019	0
2003	74000	2020	0
2004	167000	2021	0
2005	135000	2022	0
2006	97000		

2.B.1 Ammonia production

Table 85. The ammonia production in Serbia in the time period 1990 –2022

Methodology

The methodology used in this inventory for the emission calculation for category 2 B $\,1\,$ Ammonia production is in

accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in NOx, CO and NH₃ emission calculation are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The source for activity data concerning ammonia production is SORS.

Recalculations and other changes

In 2019, 2020, 2021 and 2022, there is no production of ammonia in Serbia

Planned improvements

No planned improvements in the next period.

2.B.2 Nitric acid production

Methodology

The methodology used in this inventory for the emission calculation for category 2 B 2 Nitric acid production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.B.2				
	Nitric acid production			
	(Mg prod	l., 100% Ac	id)	
1990	236245	2007	152000	
1991	188775	2008	72000	
1992	167742	2013	69000	
1993	116010	2010	126000	
1994	156192	2011	171000	
1995	148795	2012	188000	
1996	229379	2013	202000	
1997	240292	2014	133000	
1998	185374	2015	98000	
1999	79039	2016	81000	
2000	76000	2017	137075	
2001	81000	2018	119735	
2002	133000	2019	0.008	
2003	87000	2020	0	
2004	173000	2021	0	
2005	171000	2022	0	
2006	95000			

Table 86. Total amount of nitric acid production in Serbia in the time period 1990 - 2022.

Emission factors

Emission factors used in NOx emission calculation are Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The source for activity data concerning nitric acid production is SORS.

Recalculations and other changes

In 2019, the production of nitric acid was significantly reduced. In 2020, 2021 and 2022, there are no production of nitric acid in Serbia.

Planned improvements

No planned improvements in the next period.

2.B.3 Adipic acid production and 2.B.4 Carbide production

These two categories does not occurred in Serbia.

2.B.10.a Other chemical industry

In this IIR report category 2 B 10 a Other chemical industry included:

Sulphuric acid

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.B.10.a			
Sulphuric acid production (Mg)			
1990	874246	2007	71900
1991	579097	2008	75900
1992	289045	2013	49800
1993	75034	2010	77300
1994	22856	2011	77679
1995	84953	2012	95000
1996	230514	2013	99000
1997	177271	2014	83365
1998	211309	2015	192000
1999	30486	2016	298000
2000	79900	2017	319000
2001	52000	2018	298000
2002	73700	2019	360498
2003	23100	2020	0
2004	53900	2021	0
2005	98500	2022	0
2006	76900	_	

Table 87. Total amount of sulphuric acid production in Serbia in the time period 1990 – 2022.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

In 2020, 2021 and 2022, there are no production of Sulphuric acid in Serbia.

Planned improvements

No planned improvements in the next period.

Ammonium nitrate

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS.

2.B.10.a			
Ammonium nitrate (ton)			
1990	278637	2007	186200

1991	220627	2008	88600
1992	193297	2013	81200
1993	130835	2010	150400
1994	183943	2011	205043
1995	170276	2012	227492
1996	263429	2013	242623
1997	281778	2014	158399
1998	217236	2015	118314
1999	96130	2016	73000
2000	87700	2017	131495
2001	97300	2018	144714
2002	152100	2019	0
2003	129800	2020	0
2004	204600	2021	0
2005	199600	2022	0
2006	115000		

Table 88. Total amount of ammonium nitrate production in Serbia in the time period 1990 – 2022

Recalculations and other changes

In 2019, 2020, 2021 and 2022 there is no production of ammonium nitrate in Serbia

Planned improvements

No planned improvements in the next period.

Urea

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019

2.B.10.a				
	Urea (ton)			
1990	56195	2007	31200	
1991	53120	2008	12100	
1992	51780	2009	51652	
1993	39155	2010	0	
1994	50000	2011	53185	
1995	40000	2012	50442	
1996	72235	2013	51652	
1997	66390	2014	30975	
1998	57529	2015	22827	
1999	16761	2016	25315	
2000	21600	2017	34287	
2001	16100	2018	35622	
2002	45100	2019	0	
2003	28600	2020	0	
2004	63600	2021	0	
2005	46800	2022	0	
2006	24500			

Table 89. Total amount of urea production in Serbia in the time period 1990 – 2022

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS. There was no urea production in 2010 in Serbia.

Recalculations and other changes

In 2019,2020, 2021 and 2022 there is no production of Urea in Serbia.

Planned improvements

No planned improvements in the next period.

Phosphate fertilizers

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS.

,					
	2.B.10.a				
	Phosphate fertilizers				
	(ton pro	oduced)			
1990	210860	2007	46400		
1991	169616	2008	24100		
1992	121751	2013	5200		
1993	38473	2010	6900		
1994	19115	2011	5703		
1995	16616	2012	9435		
1996	101606	2013	51687		
1997	72255	2014	51755		
1998	56211	2015	34741		
1999	21589	2016	44638		
2000	25000	2017	43116		
2001	35000	2018	41594		
2002	9000	2019	62373		
2003	13500	2020	53657		
2004	7300	2021	53799		
2005	8100	2022	87296		
2006	2200				

Table 90. Total amount of phosphate fertilizers production in Serbia in the time period 1990 – 2022

Recalculations and other changes

The data on phosphate fertilizers were taken from the Statistical Office of the Republic Serbia.

Since 2017, the methodology of data collection at the Statistical Office of the Republic Serbia has changed, so we took the data for 2018 and interpolated for 2017.

We entered data for 2021 due to new data for 2021 from the statistical yearbook.

Planned improvements

No planned improvements in the next period.

Ethylene and propylene

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.B.10.a			
	Ethylene		
	(kton pr	oduced)	
1990	258	2007	266
1991	210	2008	229
1992	110	2013	156
1993	0	2010	191
1994	0	2011	227
1995	0	2012	71
1996	101	2013	231
1997	243	2014	166
1998	242	2015	113
1999	85	2016	212
2000	132	2017	158
2001	120	2018	144
2002	174	2019	0
2003	162	2020	148
2004	243	2021	143
2005	251	2022	0
2006	254		

Table 91. Total amount of ethylene and propylene production in Serbia in the time period 1990 – 2022.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS. In the period 1993-1995 there was no Ethylene production in Serbia.

Recalculations and other changes

In 2019 and 2022 there is no production of Ethylene in Serbia.

Planned improvements

No planned improvements in the next period

Polyethylene Low Density

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

2.B.10.a				
F	Polyethylene low density			
	(ton pro	duced)		
1990	48555	2007	55200	
1991	38292	2008	52700	
1992	24271	2013	41000	
1993	0	2010	58700	
1994	0	2011	58030	
1995	0	2012	21611	
1996	27224	2013	61489	
1997	52427	2014	47573	
1998	49624	2015	40062	
1999	21339	2016	50661	
2000	38600	2017	58000	
2001	48800	2018	50777	
2002	52400	2019	44900	
2003	45700	2020	55112	
2004	56900	2021	49517	
2005	52400	2022	54917	
2006	57200			

Table 92. Total amount of polyethylene low density production in Serbia in the time period 1990 – 2022.

Activity data

The source for activity data for this category is SORS. In the period 1993-1995 there was no polyethylene low density production in Serbia.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

Polyethylene High Density

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.B.10.a			
P	Polyethylene high density		
	(ton pro	duced)	
1990	60778	2007	89000
1991	44302	2008	88300
1992	23774	2013	62400
1993	0	2010	68000
1994	0	2011	67963
1995	0	2012	21325
1996	28944	2013	94622
1997	57799	2014	51892
1998	63378	2015	70118
1999	25033	2016	86035
2000	54500	2017	88740
2001	70600	2018	83071
2002	73500	2019	70778
2003	64000	2020	90784
2004	90300	2021	90242
2005	80400	2022	88645
2006	88700		

Table 93. Total amount of polyethylene high density production in Serbia in the time period 1990 – 2022.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS. In the period 1993-1995 there was no polyethylene high density production in Serbia.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

Polypropylene

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2016. National emission factors have not been developed.

2.B.10.a				
	Polypropylene			
	(ton pro	duced)		
1990	31122	2007	32700	
1991	33292	2008	30000	
1992	21077	2013	11000	
1993	163	2010	25600	
1994	1431	2011	32224	
1995	437	2012	17217	
1996	16004	2013	34719	
1997	31270	2014	29881	
1998	34267	2015	32229	
1999	13208	2016	34119	
2000	21200	2017	31860	
2001	31000	2018	45015	
2002	28900	2019	0	
2003	28700	2020	0	
2004	32200	2021	0	
2005	32100	2022	0	
2006	30600			

Table 94. Total amount of polypropylene production in Serbia in the time period 1990 – 2022.

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

In 2019, 2020, 2021 and 2022, there is no production of Polypropylene in Serbia.

Planned improvements

No planned improvements in the next period.

Styrene-butadiene rubber (SBR)

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

2.B.10.a		
Sty	/rene	
(ton produced)		
2000	15200	
2001	24500	
2002	24600	
2003	21700	
2004	30400	
2005	31400	
2006	32000	
2007	34300	
2008	35000	
2013	18000	
2010	23800	
2011	24387	
2012	9518	
2013	20683	
2014	0	
2015	0	
2016	0	
2017	0	
2018	0	
2019	0	

2020	0
2021	0
2022	0

Table 95. Total amount of styrene-butadiene rubber (SBR) production in period 1990 – 2022.

Emission factors

Emission factors used in this category is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The source for activity data for this category is petrochemical industry. The data were not available for the period 1990 -1999. After 2013. there was no Styrene production in Serbia.

Recalculations and other changes

No recalculations were performed.

Planned improvements

In the next period, SEPA will try to collect all missing data and recalculate the amount of emissions for whole period.

Production of: Ammonium sulphate, Ammonium phosphate, NPK fertilisers, Carbon black, Titanium dioxide, Graphite, Chlorine production, 1,2 dichloroethane + vinylchloride (balanced), Polyvinylchloride, Styrene, Polystyrene, Styrene butadiene, Styrene-butadiene latex, Acrylonitrile Butadiene Styrene (ABS) resins, Ethylene oxide, Formaldehyde, Ethylbenzene, Phtalic anhydride, Acrylonitrile, Glyoxylic acid, Pesticide - Serbia does not have information on these activities. We'll put in an improvement plan and we'll calculate emissions when once data become available.

2.C Metal industry

This category includes:

- 2.C.1 Iron and steel production
- 2.C.3 Aluminium production
- 2.C.5.a Copper production
- 2.C.5.b Lead production
- 2.C.5.e Other metal production (Magnesium production)

2.C.1 Iron and steel production

2.C.1		2.C.1
Sinter production		Pellet production.
g/Mg sinter		g/Mg pellet
2004	941349	641095
2005	1094502	889273
2006	1341834	1542287
2007	1137976	1338261
2008	1215427	1393685
2013	690020	973477
2010	773848	1208049
2011	967194	1058133

2012	336994	207266
2013	413968	235919
2014	624035	327470
2015	884550	623097
2016	384081	802219
2017	773232	1431960
2018	1113352	1552507
2019	1203368	1265650
2020	1011079	581744
2021	1153480	580834
2022	1131824	544795

Table 96. Total amount of sinter and pellet production in period 1990 – 2022.

Methodology

The methodology used in this inventory for the emission calculation for category 2 C 1 Iron and steel production is in accordance with the EMEP/EEA Emission Inventory Guidebook

2019.

Emission factors

Emission factors used in emissions calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The data for the emission calculation in category 2C1: Iron and steel, is derived from operator for sinter and pellet. For pellet and sinter there was no productions before 2003. The operator who provides us with data on the production of sinter and pellets is the only one on the territory of the Republic of Serbia. There is no information on other possible activities included in the scope of source categories 2C1, such as Blast furnace charging, Pig iron tapping, Open hearth furnace steel plant, Basic oxygen furnace steel plant, Electric furnace steel plant and Rolling mills.

Due to the increased production of iron and steel there was an increase in emissions.

	2.C.1				
	Pig iron production.				
1990	2313000	2007	1485126		
1991	1266000	2008	1582118		
1992	511000	2013	1007986		
1993	62000	2010	1234633		
1994	22000	2011	1258181		
1995	108000	2012	346107		
1996	565000	2013	402026		
1997	907000	2014	595549		
1998	850000	2015	969831		
1999	139000	2016	1296634		
2000	598000	2017	1341326		
2001	456000	2018	1708153		
2002	485000	2019	1681527		
2003	635000	2020	1106761		
2004	1003135	2021	1186098		
2005	1208118	2022	1118428		
2006	1698446				

Table 97. Total amount of pig iron production in period 1990 – 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.C.2 Ferroalloys production

The production of ferroalloys does not occurred in Serbia.

2.C.3 Aluminum production

Methodology

The methodology used in this inventory for the emission calculation for category 2 C 3 Aluminum production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

production is in accordance with the Liv	
2.C.3	
Aluminium production	
(Mg)	

1990	342	2007	10298
1991	178	2008	10601
1992	80	2009	9013
1993	36	2010	13867
1994	115	2011	12104
1995	86	2012	12888
1996	51	2013	13529
1997	2	2014	13436
1998	0	2015	11941
1999	0	2016	13864
2000	494	2017	13989
2001	526	2018	15284
2002	487	2019	12989
2003	603	2020	10869
2004	514	2021	8749
2005	269	2022	6629
2006	3293		

Table 98. Total amount of Al production in Serbia in the period 1990 – 2022

Emission factors

Emission factors used in emissions calculation for this category are Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

National emission factors have not been developed.

Activity data

The source for activity data for this category is company which produced Aluminium. There was no production of

aluminium in 1998 and 1999.

Recalculations and other changes

For 2021 and 2022 the extrapolation has been done due to lack of data.

Planned improvements

No planned improvements in the next period.

2.C.4 Magnesium production

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions was calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is company which produced magnesium. This category covers magnesium production. There was no production of magnesium in 1993-1994, in 2000 and 2002-2004.

2.C.4					
	Magnesiur	n produ	ction		
	(ton p	roduced			
1990	5788	2007	1649		
1991	5360	2008	1478		
1992	4055	2013	1341		
1993	0	2010	933		
1994	0	2011	1582		
1995	2560	2012	1387		
1996	3090	2013	2026		
1997	3742	2014	1800		
1998	3965	2015	3894		
1999	1203	2016	4131		
2000	0	2017	4202		

2001	203	2018	4123
2002	0	2019	3045
2003	0	2020	1287
2004	0	2021	1895
2005	523	2022	1819
2006	181		

Table 99. Total amount of Mg production in Serbia in the period 1990 – 2022

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.C.5. Lead production

Methodology

The methodology used in this inventory for the emission calculation for lead production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for lead production is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Table 100. Total amount of lead production in Serbia in the period 1990 – 2022

Year	Secondary lead	Primary lead	Year	Secondary lead	Primary lead
	Mg le	ad		Mg le	ead
1990	5565	6000	2007	8106	0
1991	1629	51000	2008	12000	0
1992	475	78000	2009	14036	0
1993	284	8000	2010	24032	0
1994	2748	13000	2011	26148	0
1995	2415	19000	2012	18383	0
1996	3488	44000	2013	7546	0
1997	5025	42000	2014	0	0
1998	4845	36000	2015	0	0
1999	4077	4000	2016	0	0
2000	5145	5000	2017	0	0
2001	5143	5000	2018	0	0
2002	5272	5000	2019	0	0
2003	4893	5000	2020	0	0
2004	5395	0	2021	0	0
2005	4666	0	2022	0	0
2006	6434	0			

Activity data

The source for activity data concerning this category is operator for lead production. From 2014. Category 2 C 5 Lead production does not exist.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.C.6. Zinc production

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Table 101. Total amount of zinc production in Serbia in the period 1990 – 2004

2.C.6				
Primary zinc production				
(Mg	g Zinc)			
1990	24000			
1991	39000			
1992	42000			
1993	7000			
1994	4000			
1995	6000			
1996	30000			
1997	39000			
1998	14000			
1999	1000			
2000	8000			
2001	13000			
2002	1500			
2003	2000			
2004	100			

Emission factors

Emissions was calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office After 2004 Zink production does not occurred in Serbia.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.C.7 a Copper production

Methodology

The methodology used in this inventory for the emission calculation for copper production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Table 102. Total amount of copper production in Serbia in the period 1990 – 2022

Year	Secondary copper	Primary copper	Yera	Secondary copper	Primary copper
rear	Mg	T		Mg	
1990	0	151000	2007	2490	28800
1991	0	134000	2008	2640	31100
1992	0	135000	2009	1140	26300
1993	0	51000	2010	950	21200
1994	0	72000	2011	2708	25740
1995	0	78000	2012	2536	32166
1996	0	104000	2013	3432	32408
1997	0	113000	2014	1921	31255
1998	0	94000	2015	2207	42439
1999	0	50000	2016	2231	59078
2000	720	44900	2017	1469	67752
2001	50	32300	2018	2219	65189
2002	970	34900	2019	5092	78091
2003	560	13500	2020	9935	60976
2004	820	11200	2021	20346	45649
2005	1990	29300	2022	7573	17543
2006	2520	38900			

Emission factors

Emission factors used in emission calculation for copper production is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019, Table 3.2 Tier 2 emission factors for source category 2.C.5.a Copper production, primary copper and Table 8.5 Tier 2 emission factors for source category 2.C.5.a Copper production, secondary copper

National emission factors have not been developed.

Activity data

The source for activity data for this category is operator for copper production for the period 2000 – 2012 and for previous period (1990 – 1999) data source was Serbian Statistical Office. There were no data for secondary copper before 2000.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 D Other Industry

2 D 3 a Domestic solvent use including fungicides

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions was calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 D 3 b Road paving with asphalt

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

2 D 3 b								
	Road paving with asphalt							
Year	Mg asphalt	Year	Mg asphalt					
1990	423104	2007	350634					
1991	335604	2008	291890					
1992	135259	2013	204734					
1993	17935	2010	197325					
1994	32736	2011	172005					
1995	47537	2012	123824					
1996	122470	2013	107243					
1997	118360	2014	300462					
1998	98481	2015	456629					
1999	40911	2016	489080					
2000	73082	2017	418577					
2001	86538	2018	496915					
2002	124560	2019	657988					
2003	92486	2020	522387					
2004	233153	2021	577538					
2005	308943	2022	522344					
2006	345565							

Table 103. Total amount of asphalt for road paving in Serbia in the period 1990-2022

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 D 3 c Asphalt roofing

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office. According of Serbian Statistical Office data there are no production of roofing cards - shingles (activity data for calculating emissions for asphalt roofing). Because of that number in 2017, 2018, 2019, 2020, 2021 and 2022 is 0.

2 D 3 c							
Asphalt roofing							
Year	Mg shingle	Mg shingle					
1990	13793	2007	4655				
1991	15709	2008	5284				
1992	11292	2013	6866				
1993	8230	2010	8848				
1994	5664	2011	9131				
1995	6834	2012	6678				
1996	8726	2013	5733				
1997	11894	2014	5185				
1998	11093	2015	4072				
1999	5830	2016	4015				
2000	7431	2017	0				
2001	6019	2018	0				
2002	5224	2019	0				
2003	5848	2020	0				
2004	6338	2021	0				
2005	6179	2022	0				
2006	4840						

Table 104. Total amount of asphalt for asphalt roofing in Serbia in the period 1990 – 2022

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 D 3 d Coating applications/Paint application

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Table 105. Total amount of products for category 2.D.3.d in Serbia in the period 1990 – 2022

	2.D.3.d.							
Year	Construction and buildings	Leather finishing	Bus coating	Truck/van coating	Car coating			
	kg paint	kg leather	No bus	No vehicles	No cars			
1990	6982520	0	509	8421	141000			
1991	4653500	0	365	8508	75000			
1992	4029250	0	294	4252	23000			
1993	4426500	0	36	278	8000			
1994	2776210	0	102	696	8000			
1995	2301780	0	90	693	8000			
1996	2361597	0	147	826	10000			
1997	2281071	0	104	1269	10000			
1998	1937963	0	146	1144	10000			
1999	1996551	0	59	425	8000			
2000	1611963	2520	159	718	12000			
2001	1938262	5520	182	590	7000			
2002	2420932	7680	263	595	11000			
2003	2710250	14280	180	466	11370			
2004	2989606	15000	183	647	14549			
2005	3237976	18600	352	501	15666			
2006	2997677	30480	154	441	11016			
2007	3062177	41760	101	473	9403			
2008	3205233	118440	324	348	7748			
2009	2641732	145920	97	155	16512			
2010	2161301	195720	44	200	14955			
2011	2310758	84630	163	245	10593			
2012	2100244	67920	95	124	22459			
2013	1567497	52800	49	38	113710			
2014	1289444	63720	12	40	103332			
2015	1875955	62520	74	15	91747			
2016	1830178	0	60	11	84410			
2017	2021396	0	53	28	72829			
2018	2148449	0	8	32	56312			
2019	2713048	0	0	9	34923			
2020	2649074	0	0	10	23278			
2021	2773826	0	0	17	21112			
2022	2505340	0	0	7	4358			

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Recalculations and other changes

No recalculations were performed.

Planned improvements

Data on other possible coating application in country such as: wire coating, truck cabin coating, wood coating, coil coating, car repairing, domestic use of paint, other non industrial paint application (i.e. the application of high performance protective anti corrosive and/or fire resistant coatings to buildings and other large metallic structures, as well as coatings for concrete, road

marking, etc.) currently are not available. Once they become available will be included in the emissions estimation.

2 D 3 e Degreasing and 2 D 3 f Dry cleaning

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2013.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 D 3 g Chemical products

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2013.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Recalculations and other changes

No recalculations were performed.

Table 106. Total amount of products for category 2.D.3.g in Serbia in the period 1990 – 2022

2 D 3 g							
	Chemical products						
Year	Year Rubber Asphalt Shoes Leather tanning Paints, inks and glues						
	kg Mg pairs kg kg						
1990	35892500	423104	24752000	3735000	27704214		
1991	29477000	335604	17212000	2265000	23687179		
1992	30296000	135259	15396000	1785000	20674467		
1993	5751000	17935	10020000	1035000	10590140		
1994	7547000	28500	8582000	1067000	14484491		

1995	7262000	47537	5847000	1042000	12105359
1996	9597000	122470	6265000	1213000	14545318
1997	11726000	118360	6656000	1124000	14502884
1998	13919000	98481	6976000	907000	13601495
1999	7553000	40911	3847000	944000	7462612
2000	12074000	73082	3806000	1200000	37355812
2001	12940000	86538	4184000	1550000	34889071
2002	13651000	124560	2876000	1880000	34787163
2003	12423000	92486	2310000	2030000	34167227
2004	11751000	233153	2775000	2153000	31395258
2005	11696000	308943	3143000	2207000	25450906
2006	10637000	345565	3679000	3033000	36687533
2007	12708000	350634	3481000	2873000	36860757
2008	14731000	291890	3327000	2993000	39252037
2013	7924000	204734	2225000	2308000	38264000
2010	10772000	197325	2250000	2190000	39562000
2011	7333000	172005	2480000	1421000	43782000
2012	6631000	123824	2379000	765000	47250000
2013	5314000	107243	2424000	816000	43832000
2014	7013000	0	3859000	866000	47999000
2015	5558000	0	4852000	1060000	48749000
2016	5168000	0	4518000	930000	95152000
2017	9362113	0	5408000	0	17418362
2018	16962231	0	6402000	0	20981870
2019	11274731	0	6343000	0	17186131
2020	8353015	0	4766720	0	19739106
2021	7549224	0	4356149	0	16942556
2022	6331942	0	4822315	0	17075670

Planned improvements

In the inventory are not included all activities that fall in source category 2D3g like Polyester processing, Polyurethane foam processing, Polystyrene foam processing, Tyre production, Pharmaceutical products manufacturing and Adhesive, magnetic tapes, films and photographs manufacturing. Once the activity data for calculating emissions from these activities becomes available, we will include them in the Inventory.

2 D 3 h Printing

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2013.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 D 3 i Other solvent and product use

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Emission factors

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data concerning this category is Serbian Statistical Office.

Table 107. Total amount of products for category 2.D.3.i in Serbia in the period 1990 – 2022

	2 D 3 i								
	Other solvent and product use								
	Fat, edible and non-edible oil extraction	Wood preservation, Creosote preservative type	Treatment of vehicles	Tobacco combustion	Use of Shoes				
Year	kg seed	kg	person	Mg	pair				
1990	375593400	0	7827000	14604	24752000				
1991	429253500	0	7825000	16336	17212000				
1992	365289600	0	7832000	13903	15396000				
1993	365375400	0	7841000	14797	10020000				
1994	364661700	0	7849000	11549	8582000				
1995	396516900	0	7856000	11217	5847000				
1996	342345900	0	7844000	10052	6265000				
1997	392191800	0	7828000	8506	6656000				
1998	398447400	2151340	7807000	12234	6976000				
1999	294645000	1203170	7781000	10645	3847000				
2000	239866000	1078920	7747000	13264	3806000				
2001	203855000	878980	7727000	12539	4184000				
2002	298055000	515000	7500030	14247	2876000				
2003	331489000	549400	7480590	14375	2310000				
2004	302671000	1009730	7463155	15107	2775000				
2005	323647000	577440	7440765	17324	3143000				
2006	276803891	475680	7411565	18267	3679000				
2007	229948151	366790	7381575	21304	3481000				
2008	307228359	695830	7350220	20873	3327000				
2009	345421300	260510	7320805	20482	2225000				
2010	257666000	470460	7291435	21906	2250000				
2011	229012001	596770	7258753	27326	2480000				
2012	247708518	437450	7199077	27161	2379000				
2013	236567000	652269	7164132	23832	3933000				
2014	262232000	700950	7131787	21081	3859000				
2015	274342000	533640	7095383	33378	4852000				

2016	535374000	0	7058322	41582	4518000
2017	558161000	0	7020858	45971	5408000
2018	563288000	0	6982604	42374	6402000
2019	629254000	0	6926705	40084	6343000
2020	562635178	0	6871547	42228	4766720
2021	500244569	0	6797105	44151	4356149
2022	544772421	0	6641197	46029	4818510

Recalculations and other changes

No recalculations were performed.

Planned improvements

In the inventory are not included all activities that fall in source category 2D3i like Glass wool and Mineral wool enduction, Application of glues and adhesives, Use of Fireworks, Tabacco combustion, Other (Concrete additive, Cooling lubricant, Lubricant, Pesticide, Aeroplane de-icing Agent). Once the activity data for calculating emissions from these activities becomes available, we will include them in the Inventory.

Also, activities such as: Glass wool enduction, Mineral wool enduction, Fat, edible and non edible oil extraction, Application of glues and adhesives, Preservation of wood, Underseal treatment and conservation of vehicles and Vehicles dewaxing fall into NFR 2D3i and activities such as: Use of fireworks, Use of tobacco, Use of shoes and Barbeque fall under 2G. For the next submission we will stratify all the activities that are currently in 2D3i into 2D3i and 2G by using a mapping table.

2.H.1 Pulp and paper

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category is Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS.

	2.H.1						
	Pulp an	d paper					
	(Mg air dı	ried pulp)				
1990	348813	2007	270700				
1991	308214	2008	293900				
1992	253020	2009	275300				
1993	128813	2010	329200				
1994	137085	2011	383567				
1995	163245	2012	404331				
1996	148718	2013	444577				
1997	139463	2014	429944				
1998	169907	2015	444271				
1999	136006	2016	484665				
2000	182900	2017	470027				
2001	190400	2018	464753				
2002	185700	2019	502080				

2003	149000	2020	538566
2004	233400	2021	645398
2005	231500	2022	607053
2006	224300		

Table 108. Total amount of pulp and paper production in Serbia in the time period 1990 – 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2.H.2 Food and drink

Methodology

The methodology used in this inventory for the emission calculation for food and drink production is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for emissions from food and drink production is Tier 2 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

Table 109. – Total amount of food and drink production in Serbia in the time period 1990-2022

2.H.2	Spirits	Beer	Wine	Animal feed	Margarine and solid cooking fats	Sugar	Meat, fish and poultry	Cakes, biscuits and breakfast cereals	Bread
	hl alcohol	hl alcohol	hl alcohol	Mg feed	Mg product	Mg sugar	Mg product	Mg product	Mg bread
1990	222185	5443580	988231	1541434	38968	619213	190944	48520	335022
1991	309778	5014543	1249532	1379919	40897	469520	170336	48500	282290
1992	362967	4295956	1169767	1202645	36501	314227	135883	45373	288909
1993	676649	2800718	836935	891811	32501	126646	81044	26028	350973
1994	139704	4677942	871245	775515	32222	209964	161289	31641	325631
1995	124750	5190133	676225	815291	36734	155750	100130	39305	331644
1996	56612	5608188	801073	691466	32499	382040	105529	38318	310188
1997	35294	5708069	931877	623470	32014	239527	95182	45098	270821
1998	38366	6174899	842158	665983	39237	212874	85690	53754	270140
1999	36607	6191445	602592	571766	39230	248442	87607	56415	290948
2000	229300	6171000	623900	492600	43700	115000	76500	86300	347500
2001	176100	5488000	558700	489300	41700	209000	67500	74100	303400
2002	171400	5462000	452200	564400	42400	282000	56200	82600	242700
2003	193600	5496000	631200	532000	41000	223000	59500	79900	222000
2004	203700	5328000	763900	493900	42300	340000	84400	102200	212200
2005	154400	5206000	363000	532300	42300	387000	96700	111900	200200
2006	179400	6451000	436900	620500	42600	430000	92400	119600	196100
2007	167100	6547000	482100	596600	43500	427000	102900	124700	190300
2008	167200	6470000	447100	821700	43500	445000	104700	129600	187900
2013	128300	5436000	368700	819100	40700	433000	91500	121900	173400
2010	112717	5289000	238200	837300	43600	469000	91000	122000	164800
2011	92275	5461617	226080	850245	41438	463103	195253	117465	145229
2012	76698	5794887	219592	958169	41880	402593	194077	129985	141532
2013	76646	5320652	230580	850054	37512	508452	178546	121299	136083
2014	58329	5229208	198215	892707	33750	545957	187909	102365	181363
2015	60662	5444191	241040	974038	32416	329440	211976	104751	204687
2016	65251	5412671	360250	1160846	32718	536121	225525	108499	210185
2017	74639	5433229	332828	1208126	27298	528417	103786	148679	171312
2018	72986	5650625	295200	1361650	27437	361746	103289	162510	167787
2019	72154	5734217	278216	1487115	25739	247194	119604	16345	342535

2020	68252	5354518	214041	1549208	18413	330046	115650	19407	161921
2021	74821	5534932	208709	1446931	25907	328879	116840	22245	165692
2022	81044	5659738	181620	1446394	23704	235300	111275	22547	169373

Activity data

The source for activity data for all subcategories in this category is SORS. There is a significant decrease in NMVOC IEF in period 1994-2001 and in 2015 compared to historic trend. From 1994 there is lower production for spirits, which is in line with NMVOC decrease. For the year 2015 there was smaller production of sugar in country.

Recalculations and other changes

We entered data for the subcategory Meat, fish etc. frying / curing that we haven't had since 2016. We obtained data on meat processing and canning from the Industrial Bulletin.

We have changed the data for Wine unspecified color to 2021 because we have found new data

Planned improvements

No planned improvements in the next period

2.I Wood processing

Methodology

The methodology used in this inventory for the emission calculation for wood processing is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in emission calculation for emissions from wood processing is Tier 1 emission factors attained from EMEP/EEA Inventory Guidebook 2019.

	2.1					
	Wood pr	ocess	sing			
	(Mg wood	proc	luct)			
1990	243788	2007	83984			
1991	219309	2008	66332			
1992	212364	2009	31060			
1993	134171	2010	208814			
1994	123509	2011	252256			
1995	132074	2012	287682			
1996	133407	2013	276564			
1997	130007	2014	361879			
1998	127720	2015	349501			
1999	96265	2016	342788			
2000	119295	2017	369853			
2001	83383	2018	412884			
2002	36425	2019	332296			
2003	41083	2020	341892			
2004	73285	2021	425043			
2005	62941	2022	350754			
2006	67766					

Table 110. Total amount of wood production in Serbia in the time period 1990 – 2022

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

2 J Production of POPs

Production of POPs does not occurred in Serbia.

2.K Consumption of POPs and heavy metal

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The source for activity data for this category is SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

5. AGRICULTURE (NFR 3)

This category comprises:

- 3.B.1.a Dairy cattle
- 3.B.1.b Cattle non-dairy
- 3.B.3 Sheep
- 3.B.4 Goats
- 3.B.6 Horses
- 3.B.8 Swine
- 3.B.9.a Laying hens
- 3.B.9.b Broilers
- 3.B.9.c Turkeys
- 3.B.9.d Other poultry
- 3.D.a.1 Synthetic N-fertilizers
- 3.F Field burning of agricultural residues

This chapter provides information on the estimated ammonia (NH_3) and nitric oxide (NO) emissions and emissions of particulate matter (PM_{10} , $PM_{2.5}$, TSP) of the sector Agriculture in Serbia.

This chapter describes emission calculation for the following source categories:

- 3 B Animal Husbandry and Manure Management
- 3 D Crop production and agricultural soils
- 3.F Field burning of agricultural residues

Category Other Agriculture - this inventory doesn't include this category, because in Serbia, according to the information and data from the Ministry of Agriculture and Environmental Protection and Serbian Chemical Agency, pesticides from the list from Table 3-1 (Tier 1 source for EFs category 4 . G Pesticides) were not used in observed period.

3.B Animal Husbandry and Manure Management

Methodology

The methodology used in this inventory is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019. For the calculation of NH₃ and PM emissions from the NFR sector 3B Animal husbandry and manure management, Tier 1 methodology was used. The Excel calculation worksheet was used for all calculation in this category.

Emission factors

Emission factors used in emission calculation are default factors attained from EMEP/EEA Inventory Guidebook 2019. National emission factors have not been developed.

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The main source for all activity is SORS.

Category Other poultry includes ducks and geese. Categories Buffalo and Mules/assess were not included in inventory, because they do not exist in Serbia.

Recalculations and other changes

We changed the data on the number of sheep, goats, horses and broilers in 2020, because we found more accurate data.

Planned improvements

No planned improvements in the next period.

Table 111. Activity data for category 3.B Animal Husbandry and Manure Management in Serbia in the time period 1990 – 2022

	3.B Animal Husbandry and Manure Management										
Year	Dairy cattle	Non - Dairy cattle	Fatting pigs	Sows	Laying hens	Broilers	Turkeys	Other poultry	Goats	Sheeps	Horses
	No	No	No	No	No	No	No	No	No	No	No
1990	794220	765780	4052541	1117459	15929247	9195405	246776	554865	170717	1949283	54000
1991	779592	702408	4151980	1135020	16331477	9796932	253008	568876	171281	1955719	53000
1992	714196	652804	3783797	936203	14515658	8219266	224877	505625	145915	1666085	48000
1993	727103	682897	3953767	997233	13524036	9570016	209515	471084	165000	1884000	41000
1994	653962	574038	3579334	908666	12980924	6321096	201101	452166	173000	1792000	42000
1995	721079	631921	4104634	1033366	15147247	6293326	234661	527625	228000	1852000	53000
1996	711614	621386	4495830	1084170	15521573	6127167	240461	540664	202000	1834000	53000
1997	707828	609672	4133162	1071638	15221500	6766027	235812	530212	184400	1757900	52200
1998	699137	580463	4092908	1000192	15381098	7007058	238284	535771	181400	1644800	50900
1999	710323	572077	4319821	1036479	15842880	4644164	245438	551856	193200	1598100	42800
2000	703268	542632	3921355	1033845	13865353	3644296	214802	482973	183300	1611100	36600

2001	677281	484519	3580074	920626	13128544	3483353	203388	457308	179500	1489400	29500
2002	647423	480577	3507123	942677	12797913	3615299	198266	445791	163900	1447600	29200
2003	636925	475075	3580638	949762	12030546	4626827	186377	419061	169200	1515500	24200
2004	638474	463326	3632646	816454	11080168	5821392	171654	385956	155300	1585600	26200
2005	620404	459596	3497237	803763	11318919	6694378	175353	394273	152000	1576000	25000
2006	607000	500000	3466000	786000	13728518	7221699	263992	504976	298563	1556000	20000
2007	584000	502000	3323000	734000	13523757	7048636	238342	475897	275037	1606000	18000
2008	542000	515000	3141000	695000	10112701	7229370	157388	482823	283984	1605000	17000
2009	501000	500000	3175000	714000	14439049	7493721	172523	372988	263286	1504000	14000
2010	482000	458000	3015000	697000	11614950	8241205	150243	372394	236935	1475000	14000
2011	477000	459000	2851000	657000	11641958	7828647	129162	330418	238751	1460000	12000
2012	455000	467000	2750000	598000	10518289	7092668	144318	381750	231837	1635218	11414
2013	429000	484000	2802000	550000	9229751	9903868	111310	443978	225073	1616219	15605
2014	437000	484000	2900000	540000	10650270	9879014	184562	384030	218603	1748110	15606
2015	430000	487000	2927000	531000	11537622	9379310	203605	326906	202828	1789144	15222
2016	426000	468000	2669000	519000	11163404	9419814	159308	374769	200150	1664895	15337
2017	429000	471000	2561000	527000	10964443	8617556	156815	236205	182558	1704192	16560
2018	423000	457000	2447000	518000	10807285	10538586	207400	339639	195932	1711677	14973
2019	422583	475595	2550000	446000	10204565	11160110	87813	275414	191280	1641827	13721
2020	417000	471000	2647000	516000	9845000	11023255	84000	237213	202325	1684613	13091
2021	407858	451656	2536000	488000	9842024	9909085	72180	154231	195037	1695408	12725
2022	374199	425645	2372000	452000	9407986	9975518	69381	123579	191703	1720826	12332

3.D.a.1. Agricultural Soils

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The main source of activity data for this category is FAOSTAT and SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

Serbia does not have information on the distribution of national fertilizer consumption in the relevant compounds in use. This is a part of the improvement plan.

	3.D.a.1.						
Year	Fertilizers applied kg-1 fertilizer-N applied	Year	Fertilizers applied kg-1 fertilizer-N applied				
1990	21781776	2007	289453652				
1991	18496193	2008	257989388				
1992	21942000	2013	332070220				
1993	16572000	2010	191248900				
1994	23250000	2011	220631640				
1995	40740000	2012	327196080				
1996	49205000	2013	293019650				
1997	76922000	2014	198181460				

1998	67299000	2015	208354610
1999	41201000	2016	265880720
2000	45101000	2017	244025123
2001	77133000	2018	151079842
2002	173193618	2019	147451663
2003	132456976	2020	213373773
2004	265249444	2021	101021198
2005	245487662	2022	151994841
2006	237073390		

Table 112. Activity data for category 3Da1 Agricultural Soils in Serbia in the time period 1990 – 2022

3.D.c. Farm-level agricultural operations including storage, handling and transport of agricultural products

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

	3.0).c	
Year	Area Ha	Year	Area Ha
1990	3619561	2007	3572865
1991	3618051	2008	3603637
1992	3616540	2013	3518046
1993	3615030	2010	3520871
1994	3613520	2011	3528258
1995	3612009	2012	3462215
1996	3610499	2013	3490632
1997	3608989	2014	3506830
1998	3607478	2015	3468519
1999	3605968	2016	3439887
2000	3604458	2017	3438130
2001	3604729	2018	3486908
2002	3605000	2019	3481567
2003	3605272	2020	3504290
2004	3605543	2021	3506075
2005	3607565	2022	3488752
2006	3537002		

Table 113. Activity data for category Farm-level agricultural operations including storage, handling and transport of agricultural products

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The main source of activity data for this category is FAOSTAT and SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

3.D e. Cultivated crops

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

	3.D.e							
Year	Area Ha	Year	Area Ha					
1990	3619561	2007	3572865					
1991	3618051	2008	3603637					
1992	3616540	2013	3518046					
1993	3615030	2010	3520871					
1994	3613520	2011	3528258					
1995	3612009	2012	3462215					

1996	3610499	2013	3490632
1997	3608989	2014	3506830
1998	3607478	2015	3468519
1999	3605968	2016	3439887
2000	3604458	2017	3438130
2001	3604729	2018	3486908
2002	3605000	2019	3481567
2003	3605272	2020	3504290
2004	3605543	2021	3506075
2005	3607565	2022	3488752
2006	3537002		

Table 114. Activity data for category 3.D e. Cultivated crops

in Serbia in the time period 1990 – 2022

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The main source of activity data for this category is FAOSTAT and

SORS.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

3.F Field burning of agricultural waste

Source category description

Field burning of agricultural residues is a minor source of several pollutants. The practice of burning crop residues is used as a quick and favourable method for clearing the land from crop residues that enables further and undisturbed land tillage. Field burning can also improve the fight against diseases and pests of certain crops. This activity is prohibited by the Serbian legislation (Fire protection Law, OG 111/2009, 20/5015, 87/2018, 87/2018 – article 50). Not all crop residues are burned after the harvest; agricultural land on which unburned residues remain is tillaged and thus the land is prepared for the next sowing.

This category does not include activities of burning crop residues after their use for another purpose, for example, straw used for protection of agricultural products during storage at the farms. This activities should be included in the sector NFR 5.C.2 Waste.

Methodology, emission factors and activity data

Tier 1 methodology is based on estimates for amounts of agricultural residues and the application of a default emission factors for each pollutant, and this level of calculation will be used for emission calculation in the Republic of Serbia.

Tier 1 methodology uses the general equation for calculation of emissions from field burning of agricultural residues:

Epollutant=ARresidue_burnt $\cdot EF$ pollutant

where:

Epollutant – emission (E) of pollutant (kg);

ARresidue burnt – activity rate (AR), mass of residue burnt (kg dry matter);

EFpollutant – emission factor (EF) for pollutant (kg kg-1 dry matter).

This equation is applied at the national level, using annual national total amount of residue burned. Value of the activity rate (ARresidue_burnt) is the product of the land area on which the crops whose residues are burnt were grown (A), mass of the fuel available for combustion, in tonnes per hectare (Mb) and combustion factor (Cf). Default values are given in the 2006 IPPC Guidelines, Vol. 4, Chapter 2, Table 2.6.

Activity data should include estimates of land areas for each type, which are then used to estimate residues that are commonly burned, the fraction of residue burned and the dry matter content of residue. The mass of crop residue burned can be calculated from the following equation:

 $ARresidue_burnt = A \cdot Y \cdot s \cdot d \cdot pb \cdot Cf$

where:

A – area of land on which crops are grown whose residues are burned (ha);

Y – average crop yield (kg ha-1)

s – ratio between the mass of crop residues and the average crop yield

d – dry matter content of the yield;

pb – proportion of residues that are burned (not used elsewhere);

Cf – combustion factor (proportion of the fuel present at the time of the fire that is actually burned).

The most important data to collect for calculation of emissions are the actual amounts of crop produced (by type) with residues that are commonly burned. Considering that such data are missing, and in the absence of better data, the values given below are used.

Default values of the ratio of residue mass to crop yield (s) are given in Table . To ensure consistency with the IPCC Guidelines 2006 (Chapter 2.4), and with the assumption that the dry matter content in yield (d) is 0.85, for crops other than wheat, maize and rice, values for wheat should be used.

Data on the harvested area (Table) of the most important crops are obtained from the SORS for all years in data set. Value for the proportion of residues that are burned (pb) is calculated to be 0,1 (10%) for wheat and 0,19 (19%) for maize.

Data were calculated on the basis of the amount of wheat and maize produced in tonnes (source: SORS) and the reported quantities of wheat and maize residues burned in tonnes (source: FAOSTAT - unknown source of this data on their website). Since the data on FAOSTAT are available only for the period 2006-2019, the percentage of burned agricultural residues was calculated in accordance with their produced quantities. The average percentage from this period was applied to other years as well, based on which we calculated area of land on which the most important crops (wheat and maize) were burnt.

Table 115. Default values for estimating the amount of residues burned

	Υ	S	d	pb	Cf
Wheat	3,6	1,3	0,85	0,1	0,9
Maize	11,8	1	0,85	0,19	0,8

Table 116. Data on the harvested area (ha) and the production (t) of wheat and maize

Harvested area (ha)	Wheat	Maize	Production (t)	Wheat	Maize
1990	775.000	1.275.000	1990	3.499.000	3.490.000
1991	823.000	1.254.000	1991	3.737.000	7.463.000
1992	574.000	1.412.000	1992	1.827.000	4.304.000
1993	788.000	1.289.000	1993	2.744.000	3.841.000
1994	806.000	1.281.000	1994	2.947.000	4.484.000
1995	768.000	1.271.000	1995	2.682.000	5.481.000
1996	511.000	1.334.000	1996	1.347.000	5.197.000
1997	713.000	1.270.000	1997	2.644.000	6.626.000
1998	707.000	1.255.000	1998	2.680.000	4.954.000
1999	616.816	1.263.020	1999	2.031.000	6.126.000
2000	651.197	1.202.944	2000	1.924.000	2.938.000
2001	691.377	1.216.607	2001	2.530.000	5.910.000
2002	693.823	1.196.353	2002	2.240.000	5.586.000
2003	611.633	1.199.871	2003	1.364.787	3.817.338
2004	636.289	1.199.921	2004	2.758.017	6.569.414
2005	563.269	1.220.174	2005	2.007.060	7.085.366
2006	539.813	1.169.976	2006	1.875.335	6.016.765
2007	559.257	1.201.832	2007	1.863.811	3.904.825
2008	487.399	1.273.908	2008	2.095.403	6.158.122
2009	567.654	1.208.640	2009	2.067.555	6.396.262
2010	484.242	1.229.573	2010	1.630.546	7.207.191
2011	493.006	1.258.437	2011	2.076.237	6.479.564
2012	603.275	976.021	2012	1.910.914	3.532.602
2013	631.640	980.333	2013	2.690.266	5.864.419
2014	604.748	1.057.876	2014	2.387.202	7.951.583
2015	589.922	1.010.227	2015	2.428.203	5.454.841
2016	595.118	1.010.097	2016	2.884.537	7.376.737
2017	556.115	1.002.319	2017	2.275.623	4.018.370
2018	643.083	901.753	2018	2.941.601	6.964.770
2019	577.499	962.083	2019	2.534.643	7.344.542
2020	581.128	996.527	2020	2.873.503	7.872.607
2021	598.735	1020.337	2021	3.442.308	6.027.131
2022	631086	952216	2022	3.109.827	4.283.293

		3. F	
Year	Field burning of agricultural residues (kg)	Year	Field burning of agricultural residues (kg)
1990	2221280	2007	2032490
1991	2206449	2008	2116648
1992	2358182	2013	2045876
1993	2247278	2010	2047926
1994	2241525	2011	2095069
1995	2212675	2012	1703987
1996	2216711	2013	1720716
1997	2191459	2014	1829307
1998	2166443	2015	1751356
1999	2146382	2016	1753018
2000	2067102	2017	1727196
2001	2102317	2018	1605013
2002	2072314	2019	1673509
2003	2048252	2020	1727321
2004	2057156	2021	1769924
2005	2061890	2022	1677652
2006	1976962		

Table 117. Activity data for category 3F Field burning of agricultural residues

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

The main source of activity data for this category is FAOSTAT and SORS.

Recalculations and other changes

The recalculations were done for the whole period because we found more precise data.

Planned improvements

No planned improvements in the next period

6. WASTE (NFR 5)

Serbian report covered following source categories of the sector NFR 5 Waste:

- 5.A Solid waste disposal on land
- 5.D Waste water handling
- 5.C.1.b.v Cremation

5.A Solid Waste Disposal on Land

Methodology

The methodology for calculation emission of NMVOC for category Solid waste disposals on land was used it has been prepared for Ukraine on behalf of the Landfill Methane Outreach Program, U.S. Environmental Protection Agency, as part of the Methane to Markets program activities in Ukraine. The main purpose of the Ukraine LFG Model is to provide landfill owners and operators with a tool to use to evaluate the feasibility and potential benefits of collecting and using the generated LFG for energy recovery or other uses.

Emission factors

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors. National emission factors have not been developed.

		5.A												
Sol	id waste (disposal	on land											
(m3 landfill gas)														
1990	23041	2007	47590											
1991	24680	2008	49003											
1992	26258	2009	50392											
1993	27784	2010	54662											

1994	29263	2011	58948
1995	30715	2012	62489
1996	32142	2013	66179
1997	33540	2014	69609
1998	34918	2015	72756
1999	36269	2016	74468
2000	37607	2017	70974
2001	38984	2018	63641
2002	40436	2019	59059
2003	41889	2020	54171
2004	43330	2021	49957
2005	44758	2022	46789
2006	46178		

Table 118. The amount of landfill gas calculated in Serbia for period 1990 – 2022.

Activity data

The number of data has been developed and incorporated into Ukrainian software for the calculation of emissions of landfill gas into the air. This calculations was performed around 10 years ago by Faculty of Technical Science and projections were done for the period 1980 - 2040. These results are used as activity data.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

5.C.1. Cremation

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

National emission factors have not been developed.

	5.	C.1 bv	
	Cre	mation	
	(No c	of bodies	5)
1990	717	2007	2608
1991	902	2008	2633
1992	859	2009	2747
1993	1153	2010	2900
1994	1019	2011	2784
1995	1112	2012	2818
1996	1101	2013	3063
1997	1196	2014	3044
1998	2215	2015	2687
1999	2350	2016	3090
2000	2363	2017	3357
2001	2177	2018	3400
2002	2315	2019	3451
2003	2514	2020	3930
2004	2355	2021	4369
2005	2333	2022	3561
2006	2467		

Table 119. The number of cremated bodies in Serbia for period 1990 – 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

Activity data

The main sources of activity data are data obtained from 2 existing crematorium in Belgrade and Novi Sad.

5.D.1. Domestic wastewater handling

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category are emission factors attained from the EMEP/EEA Emission Inventory Guidebook 2019.

National emission factors have not been developed.

Emissions were calculated on the base of methodology (Tier 2), which implies multiplication with appropriate default emission factors.

Activity data

Activity data is the percentage of the population not connected to the sewer network. The source for activity data for this category is SORS.

Recalculations and other changes

Recalculations were made in 2019 due to changes in the data in the Statistical Yearbook.

Planned improvements

No planned improvements in the next period.

5.D.2. Industrial wastewater handling

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category are emission factors attained from the EMEP/EEA Emission Inventory Guidebook 2019.

National emission factors have not been developed.

Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

Activity data

Activity data are treated waste waters (mill m3). The source for activity data for this category is SORS. Activity data from 1990-2003 are not available.

Recalculations and other changes

Recalculations were made in 2018 and 2019 due to changes in the data in the Statistical Yearbook.

Planned improvements

No planned improvements in the next period.

5.C Waste incineration

Categories 5C 1 a Municipal waste incineration, 5 C 1 bi Industrial waste incineration and 5 C 1 biii Clinical waste incineration do not occurred in Serbia.

Open burning (Category 5.C.2) in Serbia is prohibited by law. Even if it happens in Serbia, we do not have official data about this practice. This will certainly be part of the improvement plan and if we have official data we will calculate the emissions according to the EMEP / EEA 2019 methodology.

7. OTHER AND NATURAL EMISSIONS (NFR 11)

11.A Natural sources

11.B Forest fires

Methodology

The methodology used in this inventory for the emission calculation for this category is in accordance with the EMEP/EEA Emission Inventory Guidebook 2019.

Emission factors

Emission factors used in this category is emission factors attained from EMEP/EEA Inventory Guidebook 2019. Emissions were calculated on the base of methodology (Tier 1), which implies multiplication with appropriate default emission factors.

National emission factors have not been developed.

Activity data

The source for activity data for this category is SORS.

11.B	ha	kg
1990	1514	69870000
1991	0	1083000
1992	0	6536000
1993	0	22309000
1994	0	6132000
1995	173	447000
1996	2707	2843000
1997	154	119000
1998	1403	2496000
1999	113	534000
2000	7944	5881000
2001	459	2979000
2002	969	12785000
2003	1402	37521000
2004	202	1502000
2005	52	528000
2006	494	1080000
2007	22161	5818000
2008	575	7149000
2009	1210	1932000
2010	503	57000
2011	2036	24570000

2012	7460	63118000
2013	561	7343000
2014	284	10256000
2015	827	5059000
2016	296	37114000
2017	1050	11415000
2018	303	707000
2019	1079	3397000
2020	3635	2158000
2021	834	10099000
2022	332	6267000

Table 120. The area and mass of timber burned in forest fires in Serbia for period 1990 – 2022.

Recalculations and other changes

No recalculations were performed.

Planned improvements

No planned improvements in the next period.

Serbian NFR tables for 2022

Table 121. NFR tables for 2022

Serbia:					Main Po	ollutants 1990)			Particula (from	te Matter 2000)		Other (from 1990)		ty Heavy I (from 1990					eavy Meta ntary report							Ps ⁽¹⁾ 1990)							Activity Data (from 1990)	,		
27.02.2022.: 2022	,	NFR sectors to be reported		NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	СО	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthe ne	PAHs benzo(k) fluoranthe ne	Indeno (1,2,3-cd) pyrene	Total 1-4	НСВ	PCBs	Liquid Fu	els Solid Fu	Gaseo Fuels	Biomass	Other Fuels	Other activity (specified)	Other Activity Units
NFR Aggregation for Gridding and LPS (GNFR)	NFR Code	Longname	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NC\	TJ NC	TJ NO	/ TJ NCV	TJ NCV		
A_PublicPower	1A1a	Public electricity and heat production		67.7757	0.4876	347.3261	NA	1.0423	2.2895	3.3300	0.0181	4.0552	3.8674	0.4681	0.7478	3.6828	2.3423	0.2996	3.9704	11.4972	2.8594	2.6155	0.0010	0.0095	0.0075	0.0006	0.0186	1.7120	0.0028	6016.2	256833	4 42793	4 324.5	NA	NA	TJNCV
B_Industry	1A1b	Petroleum refining		0.2565	0.0105	0.0011	NA	0.0036	0.0036	0.0036	0.0007	0.0493	0.0073	0.0029	0.0004	0.0014	0.0112	0.0090	0.0147	0.0017	0.1038	NE	0.0000	0.0000	0.0000	0.0000	0.0000	NE	NA	NA	NA	3227.	NA	NA	NA	TJNCV
B_Industry	1A1c	Manufacture of solid fuels and other energy industries		0.0384	0.0015	0.1666	NA	0.1007	0.1446	0.1501	NE	0.0110	0.0513	0.0029	0.0549	0.0201	0.0104	0.0458	0.0095	0.0053	0.0842	0.0476	0.0005	0.0000	0.0000	0.0000	0.0005	NA	NA	NA	4471.	NA	NA	NA	NA	TJNCV
B_Industry	1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel		0.7969	NE	0.5927	NA	NE	NE	NE	NE	20.4379	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	2920.4	produced [kt]
B_Industry	1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous		0.1352	NE	0.1949	NA	NE	NE	NE	NE	0.0355	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	produced [kt]
B_Industry	1A2c	Stationary combustion in manufacturing industries and construction: Chemicals		1.2604	0.7896		0.0663	0.3328	0.3431	0.3595	0.0834	1.8183	0.1224	0.0243	0.0097	0.0034	0.0489	0.0206	0.0109	0.0024	1.0571	0.2963	0.0502	0.0963	0.0321	0.0272	0.2058	0.0093	0.0938	523.0	407.3	3682.	858.9	NA	NA	TJNCV
B_Industry	1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and		0.3260	0.1489	0.3171	0.0062	0.0645	0.0681	0.0717	0.0099	0.5046	0.0507	0.0028	0.0044	0.0017	0.0086	0.0071	0.0048	0.0009	0.1593	0.0883	0.0196	0.0324	0.0123	0.0103	0.0745	0.0011	0.0585	86.4	353.8	773.9	65.7	NA	NA	TJNCV
B_Industry	1A2e	Stationary combustion in manufacturing industries and construction: Food processing,		1.9973	2.3472	0.2034	0.2622	1.0339	1.0556	1.1056	0.2951	4.4151	0.1990	0.0922	0.0088	0.0024	0.1641	0.0438	0.0150	0.0043	3.6877	0.7260	0.0818	0.1617	0.0479	0.0400	0.3314	0.0355	0.0099	1240.3	80.6	3853.	4360.0	NA	NA	TJNCV
B_Industry	1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic		3.9646	0.0449	1.2047	NA	NE	NE	NE	NE	4.5876	0.2444	0.0199	0.1222	0.0661	0.1022	0.1613	0.1222	0.0631	1.0572	0.0102	0.0002	0.0007	0.0002	0.0001	0.0012	0.0115	0.2568	NA	NA	NA	NA	NA	5666.8	produced [kt]
I_Offroad	1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in		5.4200	0.6068	0.0441	0.0013	0.2959	0.2959	0.2959	0.1816	3.2689	NE	0.0000	NA	NA	0.0000	0.0002	0.0000	0.0000	0.0001	NA	0.0000	0.0000	NA	NA	0.0000	NA	NA	NA	NA	NA	NA	NA	138.0	produced [kt]
B_Industry	1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)		4.9178	0.1203	9.4792	NA	0.7359	0.9029	1.0835	0.0284	1.5426	0.1963	0.0297	0.0285	0.1363	0.0983	0.1501	2.1013	0.2261	1.4849	0.2818	0.0046	0.0004	0.0002	0.0003	0.0055	0.0491	0.0144	9297.5	4869.	12381	5 1971.9	NA	NA	TJNCV
H_Aviation	1A3ai(i)	International aviation LTO (civil)		0.5948	0.0358	0.0573	NE	0.0050	0.0050	NE	0.0000	0.8456	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	53083.4	LTO
H_Aviation	1A3aii(i)	Domestic aviation LTO (civil)		0.0011	0.0001	0.0001	NE	0.0000	0.0000	NE	0.0000	0.0015	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	94.6	LTO
F_RoadTransport	1A3bi	Road transport: Passenger cars		31.6840	5.6037	2.9700	0.6652	2.2848	3.2720	NA	NA	27.5084	8.1093	0.0069	NA	NA	3.4037	8.9579	1.0385	0.1325	3.9327	0.6629	0.0777	0.0873	0.0678	0.0743	0.3071	NA	NA	NA	NA	NA	NA	NA	NA	TJNCV
F_RoadTransport	1A3bii	Road transport: Light duty vehicles		8.1360	0.4969	0.7651	0.0262	0.6287	0.8564	NA	NA	3.2773	2.1045	0.0009	NA	NA	0.8446	2.7124	0.2056	0.0252	1.0901	0.6696	0.0157	0.0176	0.0137	0.0148	0.0618	NA	NA	NA	NA	NA	NA	NA	NA	TJNCV
F_RoadTransport	1A3biii	Road transport: Heavy duty vehicles and buses		35.9006	1.3576	2.3920	0.0385	1.2667	1.6175	NA	NA	8.5588	2.3848	0.0001	NA	NA	0.9458	4.0806	0.2182	0.0299	1.7224	0.6650	0.0068	0.0409	0.0458	0.0105	0.1040	NA	NA	NA	NA	NA	NA	NA	NA	TJNCV
F_RoadTransport	1A3biv	Road transport: Mopeds & motorcycles		0.2009	1.1510	0.0002	0.0014	0.0241	0.0280	NA	NA	5.7564	0.0313	0.0031	NA	NA	0.0244	0.0609	0.0229	0.0032	0.0235	0.6063	0.0002	0.0003	0.0002	0.0003	0.0010	NA	NA	NA	NA	NA	NA	NA	NA	TJNCV
F_RoadTransport	1A3bv	Road transport: Gasoline evaporation		NA	2.6530	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	vehicle [1000]
F_RoadTransport	1A3bvi	Road transport: Automobile tyre and brake wear		NA	NA	NA	NA	1.1984	2.3757	2.9655	0.3714	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10^6 km
F_RoadTransport	1A3bvii	Road transport: Automobile road abrasion		NA	NA	NA	NA	0.4607	0.8531	1.7063	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10^6 km
I_Offroad	1A3c	Railways		0.5764	0.0512	NE	0.0001	0.0151	0.0158	0.0167	0.0001	0.1177	NE	0.0001	NE	NE	0.0006	0.0187	0.0008	0.0001	0.0110	NE	0.0003	0.0006	NE	NE	0.0009	NA	NA	NA	NA	NA	NA	NA	12.0	produced [kt]
G_Shipping	1A3di(ii)	International inland waterways	1A3dii	IE	IE	IE	IE	IE	IE	E	ΙE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	produced [kt]
G_Shipping	1A3dii	National navigation (shipping)		1.5067	0.0513	0.3800	NE	0.1064	0.1178	0.1178	0.0001	0.1406	0.0034	0.0004	0.0004	0.0129	0.0137	0.0238	0.6080	0.0040	0.0228	0.0089	NE	NE	NE	NE	NE	0.0027	0.0108	NA	NA	NA	NA	NA	21.0	produced [kt]
I_Offroad	1A3ei	Pipeline transport		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	TJNCV
I_Offroad	1A3eii	Other (please specify in the IIR)	1A3	IE	IE	IE	IE	IE	IE	E	IE	IE	IE	IE	IE	ΙE	IE	IE	IE	E	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	TJNCV
C_OtherStationaryComb	1A4ai	Commercial/institutional: Stationary		2.2438	0.4390	1.2294	NA	0.2124	0.2348	0.2437	0.0466	1.6740	0.1763	0.0045	0.0180	0.0219	0.0194	0.0295	0.0180	0.0108	0.3945	0.2716	0.0573	0.0742	0.0299	0.0233	0.1847	0.0008	0.2140	2215.0	944.9	11639) NA	NA	NA	TJNCV
I_Offroad	1A4aii	Commercial/institutional: Mobile		IE	ΙE	IE	E	IE	IE	IE	IE	E	IE	E	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	E	IE	IE	IE	IE	IE	IE	IE	produced [kt]

Serbia:					Main Po	ollutants 1990)			Particula (from	te Matter 2000)		Other (from 1990)		ty Heavy I (from 1990			Ad (from	dditional I	leavy Meta intary repor	als ting)						Ps ⁽¹⁾ 1990)							ctivity Data (from 1990)			
27.02.2022.: 2022	^	IFR sectors to be reported		NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthe	PAHs benzo(k) fluoranthe ne	Indeno (1,2,3-cd) pyrene	Total 1-4	нсв	PCBs	Liquid Fuel	s Solid Fuels	Gaseous Fuels	Biomass	Other Fuels	Other activity (specified)	Other Activity Units
NFR Aggregation for Gridding and LPS (GNFR)	NFR Code	Longname	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ NCV	TJ NCV		
C_OtherStationaryComb	1A4bi	Residential: Stationary		6.1031	38.5498	5.7055	4.1862	46.4399	47.6684	50.2792	4.5646	264.7833	2.3278	0.7854	0.0702	0.0266	1.4367	0.4813	0.1893	0.0355	31.8156	52.2432	8.4961	8.4472	3.2245	4.8485	25.0164	0.3023	0.9368	1282.2	6195.1	12390.3	59793.0	NA	NA	TJNCV
I_Offroad	1A4bii	Residential: Household and gardening (mobile)	1A3	IE	ΙE	E	IE	IE	IE	Æ	IE	IE	E	IE	ΙE	IE	ΙE	IE	IE	Æ	ΙE	IE	IE	IE	IE	IE	E	ΙE	IE.	IE	IE	ΙE	IE	IE	IE	produced [kt]
C_OtherStationaryComb	1A4ci	Agriculture/Forestry/Fishing: Stationary		0.1224	0.0466	0.0070	0.0031	0.0171	0.0179	0.0185	0.0055	0.0799	0.0028	0.0012	0.0006	0.0008	0.0020	0.0009	0.0003	0.0005	0.0493	0.0095	0.0009	0.0014	0.0005	0.0004	0.0031	0.0004	0.0003	148.5	1.1	858.7	79.9	NA	NA	TJNCV
I_Offroad	1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery		2.8631	0.2959	0.0234	0.0006	0.1475	0.1475	0.1475	0.0852	0.8968	NE	0.0000	NA	NA	0.0000	0.0001	0.0000	0.0000	0.0001	NA	0.0000	0.0000	NA	NA	0.0000	NA	NA	NA	NA	NA	NA	NA	70.4	produced [kt]
I_Offroad	1A4ciii	Agriculture/Forestry/Fishing: National fishing	1A3	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	E	ΙE	IE	IE	IE	IE	IE	ΙE	IE	IE	IE	IE	IE	IE	E	IE	IE	IE	IE	IE	IE	IE	produced [kt]
C_OtherStationaryComb	1A5a	Other stationary (including military)	1A4ai	IE	ΙE	IE	Æ	IE	IE	IE	IE	IE	ΙE	E	ΙE	IE	IE	IE	IE	IE	ΙE	ΙE	IE	IE	IE	IE	IE	E	IE	IE	IE	ΙE	IE	IE	ΙE	TJNCV
I_Offroad	1A5b	Other, Mobile (including military, land based and recreational boats)	1A3	IE	IE	E	IE	IE	IE	E	IE	IE	IE	IE	IE	IE	IE	IE	IE	E	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	ΙE	produced [kt]
D_Fugitive	1B1a	Fugitive emission from solid fuels: Coal mining and handling		NA	27.9336	NA	NA	0.1746	1.4665	3.1076	NE	NA	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	36.4	Coal produced
D_Fugitive	1B1b	Fugitive emission from solid fuels: Solid fuel transformation		0.0003	0.0026	0.0003	0.0013	0.0209	0.0500	0.1189	0.0102	0.1576	0.1302	0.0024	0.0041	0.0045	0.0582	0.0164	0.0411	0.0055	0.0754	1.0278	0.0548	0.0685	0.0343	0.0240	0.1816	NE	NE	NA	NA	NA	NA	NA	0.6	for
D_Fugitive	1B1c	Other fugitive emissions from solid fuels		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	Please specify
D_Fugitive	1B2ai	Fugitive emissions oil: Exploration, production, transport		NA	0.1602	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.8	produced
D_Fugitive	1B2aiv	Fugitive emissions oil: Refining / storage		0.9917	0.8264	2.5618	0.0045	0.0178	0.0409	0.0661	NA	0.3719	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0211	0.0236	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.6	refined
D_Fugitive	1B2av	Distribution of oil products		NA	6.8560	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.0	Consume
D_Fugitive	1B2b	Fugitive emissions from natural gas (exploration, production, processing,		NA	0.0373	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.4	throughpu
D_Fugitive	1B2c	Venting and flaring (oil, gas, combined oil and gas)		NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	Gas vented
D_Fugitive	1B2d	Other fugitive emissions from energy production	(a)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	electricity
B_Industry	2A1	Cement production		IE	ΙE	IE	NA	0.3241	0.5834	0.6483	0.0097	IE	IE	E	ΙE	IE	IE	IE	IE	IE	ΙE	IE	IE	IE	IE	IE	IE	E	NA	NA	NA	NA	NA	NA	2479.7	Clinker produced
B_Industry	2A2	Lime production		IE	NE	IE	NA	0.1461	0.7305	1.8784	0.0007	IE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	136.7	Dime produced
B_Industry	2A3	Glass production		IE	NE	IE	NE	0.0132	0.0148	0.0165	0.0000	ΙE	0.0935	0.0071	0.0002	0.0104	0.0126	0.0004	0.0269	0.0440	0.0203	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	53.2	Glass produced
B_Industry	2A5a	Quarrying and mining of minerals other than coal		NA	NA	NA	NA	0.1888	1.8884	3.8522	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.8	Material quarried
B_Industry	2A5b	Construction and demolition		NA	NA	NA	NA	0.0184	0.1844	0.6218	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.2	lloor space
B_Industry	2A5c	Storage, handling and transport of mineral products		NA	NA	NA	NA	0.0033	0.0331	0.0663	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Amount [Mt]
B_Industry	2A6	Other mineral products (please specify in the IIR)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	Please specify
B_Industry	2B1	Ammonia production		NA	NE	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ammonia produced
B_Industry	2B2	Nitric acid production		NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Produced
B_Industry	2B3	Adipic acid production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Adipic acid
B_Industry	285	Carbide production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	produced
B_Industry	286	Titanium dioxide production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Titanium dioxide
B_Industry	287	Soda ash production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Soda ash produced
B_Industry	2B10a	Chemical industry: Other (please specify in the IIR)		NA	0.3357	NA	NA	0.0157	0.0210	0.0365	NA	NA	NE	NE	NA	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	336.6	produced [kt]
B_Industry	2B10b	Storage, handling and transport of chemical products (please specify in the IIR)		IE	ΙE	ΙE	IE	IE	IE	IE	ΙE	IE	ΙE	IE	ΙE	IE	ΙE	ΙE	IE	Æ	ΙE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	ΙE	Please specify
B_Industry	2C1	Iron and steel production		0.0167	0.1638	NA	NE	0.1763	0.2251	0.3681	0.0010	5.8590	21.5540	0.1712	0.1669	0.6998	5.0127	2.0489	6.3122	0.0386	15.5623	10.2664	NE	NE	NE	NE	3.1528	0.0503	7.1320	NA	NA	NA	NA	NA	4155.6	produced

Serbia:					Main Po					ate Matter		Other (from 1990)		ty Heavy I (from 1990			Ad (from	dditional H	leavy Meta intary repor	ls ting)						Ps ⁽¹⁾ 1990)						A	ctivity Data (from 1990)			
27.02.2022.: 2022	,	NFR sectors to be reported		NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthe ne	PAHs benzo(k) fluoranthe ne	Indeno (1,2,3-cd) pyrene	Total 1-4	НСВ	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass	Other Fuels	Other activity (specified)	Other Activity Units
NFR Aggregation for Gridding and LPS (GNFR)	NFR Code	Longname	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ NCV	TJ NCV		
B_Industry	2C2	Ferroalloys production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Ferroalloy s
B_Industry	2C3	Aluminium production		0.0000	NE	NA	NE	0.0036	0.0093	0.0133	0.0001	NA	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.2320	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	#VALUE!	M aredused
B_Industry	2C4	Magnesium production		NA	NE	NA	NA	NE	NE	0.0291	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	1.9	Magnesiu m
B_Industry	2C5	Lead production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NA	NA	NA	NA	NA	NA	produced
B_Industry	2C6	Zinc production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NA	NA	NA	NA	NA	NA	2inc produced
B_Industry	2C7a	Copper production		NE	NE	NA	NE	0.0049	0.0065	0.0080	0.0000	NE	0.4624	0.2806	0.0005	0.1379	0.3684	1.2120	0.3343	NE	NE	0.3788	NE	NE	NE	NE	NE	NE	28.0205	NA	NA	NA	NA	NA	66.0	Copper produced
B_Industry	2C7b	Nickel production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	produced
B_Industry	2C7c	Other metal production (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Please specify
B_Industry	2C7d	Storage, handling and transport of metal products		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Amount [kt]
E_Solvents	2D3a	Domestic solvent use including fungicides		NA	7.9694	NA	NA	NE	NE	NE	NA	NA	NA	NA	0.0372	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6797.1	Populatio n size
B_Solvents	2D3b	Road paving with asphalt		NE	0.0084	NE	NA	0.2089	1.5670	7.3128	0.0119	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	577.5	asphalt [kt]
B_Industry	2D3c	Asphalt roofing		NE	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	metal produced
E_Industry	2D3d	Coating applications		NA	0.6113	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2773.8	Paint applied
E_Solvents	2D3e	Degreasing		NA	0.0056	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6797.1	n size
E_Solvents	2D3f	Dry cleaning		NA	0.0020	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6797.1	Populatio n size
E_Solvents	2D3g	Chemical products		NE	0.4555	NE	NA	NE	NE	NA	NE	NE	NE	NA	NE	NA	NA	NE	NA	NA	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA
E_Solvents	2D3h	Printing		NA	4.3168	NA	NA	NE	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6797.1	Populatio n size
E_Solvents	2D3i	Other solvent use (please specify in the IIR)		0.0829	2.6954	NA	0.1910	1.5696	1.7331	1.8420	0.0056	2.5362	NA	0.2486	NA	NA	NA	0.2486	0.1243	NE	0.1243	0.0046	0.0051	0.0021	0.0021	0.0021	0.0113	NE	NE	NA	NA	NA	NA	NA	NA	NA
E_Solvents	2G	Other product use (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Please specify
B_Industry	2H1	Pulp and paper industry		0.6071	1.2141	1.2141	NE	0.3642	0.4856	0.6071	0.0095	3.3388	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	645.4	productio
B_Industry	2H2	Food and beverages industry		NA	6.2828	NA	NA	NE	NA	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	187.9	Wine,
B_Industry	2H3	Other industrial processes (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Please specify
B_Industry	21	Wood processing		NE	NE	NE	NE	NE	NE	0.3508	NE	NE	NA	NA	NA	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	425.0	product
B_Industry	2J	Production of POPs		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	Please specify
B_Industry	2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	0.0664	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NE	664.1197	NA	NA	NA	NA	NA	6797.1	n size
B_Industry	2L	Other production, consumption, storage, transportation or handling of bulk products		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	Please specify
K_AgriLivestock	3B1a	Manure management - Dairy cattle		0.0037	6.7120	NA	15.6415	0.1534	0.2357	0.5164	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	407.9	n size
K_AgriLivestock	3B1b	Manure management - Non-dairy cattle		0.0013	3.7891	NA	6.3847	0.0766	0.1149	0.2511	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	451.7	Populatio n size

Serbia:					Main Po					te Matter 2000)		Other (from		ty Heavy I (from 1990					leavy Meta untary repor						POF (from									ctivity Data from 1990)			
27.02.2022.: 2022	^	IFR sectors to be reported		NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthe ne	PAHs benzo(k) fluoranthe ne	Indeno (1,2,3-cd) pyrene	Total 1-4	нсв	PCBs	Liquid F	uels Soli	lid Fuels	Gaseous Fuels	Biomass	Other Fuels	Other activity (specified)	Other Activity Units
NFR Aggregation for Gridding and LPS (GNFR)	NFR Code	Longname	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NO	ν т.	J NCV	TJ NCV	TJ NCV	TJ NCV		
K_AgriLivestock	3B2	Manure management - Sheep		0.0206	0.4801	NA	2.4092	0.0344	0.1032	0.2409	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	1695.4	Populatio n size
K_AgriLivestock	3B3	Manure management - Swine		0.0075	2.0772	NA	23.4184	0.0188	0.4089	2.7708	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	3024.0	n size
K_AgriLivestock	3B4a	Manure management - Buffalo		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	Populatio n size
K_AgriLivestock	3B4d	Manure management - Goats		0.0023	0.1196	NA	0.2684	0.0038	0.0115	0.0268	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	195.0	n size
K_AgriLivestock	3B4e	Manure management - Horses		0.0023	0.1196	NA	0.2684	0.0038	0.0115	0.0268	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	12.7	n size
K_AgriLivestock	3B4f	Manure management - Mules and asses		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	Populatio n size
K_AgriLivestock	3B4gi	Manure mangement - Laying hens		0.0009	1.5523	NA	4.5158	0.0282	0.3763	1.7875	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	9842.0	n size
K_AgriLivestock	3B4gii	Manure mangement - Broilers		0.2693	1.0774	NA	1.6958	0.0200	0.1995	0.3990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	9909.1	Populatio n size
K_AgriLivestock	3B4giii	Manure mangement - Turkeys		0.0019	0.0339	NA	0.0624	0.0014	0.0076	0.0076	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	72.2	n size
K_AgriLivestock	3B4giv	Manure management - Other poultry		0.0006	0.0604	NA	0.0433	0.0037	0.0297	0.0297	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	154.2	Populatio n size
K_AgriLivestock	3B4h	Manure management - Other animals (please specify in IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	n size
L_AgriOther	3Da1	Inorganic N-fertilizers (includes also urea application)		6.0798	NA	NA	7.5997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	101021.2	inorganic
L_AgriOther	3Da2a	Animal manure applied to soils		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Use of inorganic
L_AgriOther	3Da2b	Sewage sludge applied to soils		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	n size
L_AgriOther	3Da2c	Other organic fertilisers applied to soils (including compost)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Use of inorganic
L_AgriOther	3Da3	Urine and dung deposited by grazing animals		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Use of inorganic
L_AgriOther	3Da4	Crop residues applied to soils		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Please specify
L_AgriOther	3Db	Indirect emissions from managed soils		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Please specify
L_AgriOther	3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural		NA	NA	NA	NA	0.2093	5.4425	5.4425	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	3506.1	ha (1000)
L_AgriOther	3Dd	Off-farm storage, handling and transport of bulk agricultural products		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Please specify
L_AgriOther	3De	Cultivated crops	(b)	NA	3.0003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	3506.1	ha (1000)
L_AgriOther	3Df	Use of pesticides		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		NE	NE	NE	NE	NE	Please specify
L_AgriOther	3F	Field burning of agricultural residues		0.0039	0.0008	0.0008	0.0040	0.0091	0.0096	0.0097	0.0453	0.1119	0.0002	0.0015	0.0002	0.0000	0.0001	0.0001	0.0001	0.0000	0.0009	0.8388	0.1136	0.3172	0.1488	0.0971	0.6768	NE	NE	NA		NA	NA	NA	NA	1769.9	Area burned Ika day
L_AgriOther	31	Agriculture other (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	Please specify

Serbia:	27.02.2022.: NFR sectors to be reported			Main Po	ollutants 1990)			Particula (from	te Matter 2000)		Other (from 1990)	Priority (fro	Heavy Met om 1990)	als		Addit (from 19	ional Heav 90, voluntar	y Metals y reporting)					POP (from								Activity E	ata 0)			
27.02.2022.: 2022	,	NFR sectors to be reported		NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthe f	PAHs benzo(k) fluoranthe ne	Indeno (1,2,3-cd) pyrene	Total 1-4	HCB	PCBs	Liquid Fue	ls Solid Fu	els Gaseou Fuels	Bioma	ss Other Fue	Other activi s (specified,	
NFR Aggregation for Gridding and LPS (GNFR)	NFR Code	Longname	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NC	V TJ NC\	/ TJ N	V TJ NCV		
J_Waste	5A	Biological treatment of waste - Solid waste disposal on land		NA	0.0003	NA	NE	NA	NA	NA	NA	NE I	NA	NA	NE	NA	NA	NA I	NA I	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49956.8	Annual deposition
J_Waste	5B1	Biological treatment of waste - Composting		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	Organic waste [kt]
J_Waste	5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NH3-N per t N in
J_Waste	5C1a	Municipal waste incineration	(c)	NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	MSW incinerate
J_Waste	5C1bi	Industrial waste incineration	(c)	NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	d [kt] Waste incinerate
J_Waste	5C1bii	Hazardous waste incineration	(c)	NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	Waste incinerate
J_Waste	5C1biii	Clinical waste incineration	(c)	NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	d [kt] Waste incinerate
J_Waste	5C1biv	Sewage sludge incineration	(c)	NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	[kt]
J_Waste	5C1bv	Cremation	(c)	0.0029	0.0000	0.0004	NA	0.0001	0.0001	0.0001	NE	0.0005 0.	0001	0.0000	0.0053	0.0000	.0000 0	.0000 0.	0001 0.	0001 0.000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0015	NA	NA	NA	NA	NA	4369.0	Incinerati on of
J_Waste	5C1bvi	Other waste incineration (please specify in the IIR)	(c)	NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	Please specify
J_Waste	5C2	Open burning of waste		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	waste incinerate
J_Waste	5D1	Domestic wastewater handling		NA	NE	NA	3.2515	NE	NE	NE	NE	NA I	NE	NE	NE	NE	NE	NE	NE I	NE NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2229.5	Populatio n size
J_Waste	5D2	Industrial wastewater handling		NA	0.0013	NA	NE	NE	NE	NE	NE	NA I	NE	NE	NE	NE	NE	NE	NE I	NE NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.0	m3 waste water
J_Waste	5D3	Other wastewater handling		NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	m3 waste water
J_Waste	5E	Other waste (please specify in IIR)	(d)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	fire (1000)
M_Other	6A	Other (included in national total for entire territory) (please specify in IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO I	NO	NO	NO	NO	NO	NO I	NO I	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC	NO	NO	Please specify
	NATIONAL TOTAL	National total for the entire territory (based or fuel sold)		184.9173	134.1905	377.3961	71.0173	60.2295	78.3041	94.3478	5.7845	366.7421 42.	.1402	2.1778 1	1.3678	1.8501 14	4.9502 20	1.6510 15.	.4103 12.	.1519 65.36	71.9748	8.9864	9.3584	3.6677	5.1737	30.3390	2.1754	700.8718	20809.139	2 274157.6	936 91600.35	67453.	790 NA	#VALUE!	
	1A3bi(fu) 1A3bii(fu)	Road transport: Passenger cars (fuel used) Road transport: Light duty vehicles (fuel used)	(b)	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE		NE NE		NE NE					NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	_	NE NE	TJ NCV
	1A3biii(fu)	Road transport: Heavy duty vehicles and buses (fuel used)	(b)	NE NE	NE	NE	NE	NE	NE								142		142			NE	NE	NE	NE	NE	NE	NE NE	NE NE	+	_	_	_	NE NE	TJNCV
	1A3biv(fu)									NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE									NE	NE	NE			
	1A3biv(fu)	Road transport: Mopeds & motorcycles (fuel used)	(b)	NE	NE	NE	NE	NE	NE NE	NE NE	NE NE		NE NE		NE NE					NE NE	NE NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE NE	NE NE	NE	NE	TJ NCV
	1A3biv(fu)	Road transport: Mopeds & motorcycles (fuel used) Road transport: Gasoline evaporation (fuel used)	(b)	NE NE	NE NE	NE NE	NE NE					NE				NE	NE	NE	NE					NE NE	NE NE	NE NE	NE NE	NE NE	NE NE		_	-	_	NE NE	TJ NCV
		used) Road transport: Gasoline evaporation (fuel used) Road transport: Automobile tyre and brake wear (fuel used)				1		NE	NE	NE	NE	NE NE	NE	NE	NE	NE NE	NE NE	NE NE	NE I	NE NE	NE	NE	NE		+		+			NE	NE	NE	NE	+	TJ NCV Mleage [10/6 km]
	1A3bv(fu)	used) Road transport: Gasoline evaporation (fuel used) Road transport: Automobile tyre and brake	(b)	NE	NE	NE	NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE I	NE NE	NE NE	NE NE	NE NE	NE	NE	NE	NE	NE	NE	NE NE	NE NE	NE NE	NE NE	NE	TJ NCV Mleage
	1A3bvi(fu)	used) Road transport: Gasoline evaporation (tuel used) Road transport: Automobile byte and brake wear (fuel used) Road transport: Automobile road abrasion (fuel used) Sum of approved adjustments (negative value)	(b)	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE I	NE NE	NE NE	NE NE	NE NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	TJ NCV Mleage [10/6 km]
	1A3bvi(fu) 1A3bvi(fu) 1A3bvii(fu) ADJUSTMENTS COMPLIANCE	used) Road transport Cassoline evaporation (fuel used) Road transport Automobile tyre and brake evear (fuel used) Road transport Automobile road abrasion (fuel used) Sum of approved abjustments (regative value) Com of approved abjustments (regative value) National total for compliance calculations and	(b)	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE NE	NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE I	NE NE	NE NE	NE NE NE	NE NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	TJ NCV Mleage [10/6 km]
	1A3bv(fu) 1A3bvi(fu) 1A3bvii(fu)	used) Road transport Casoline evaporation (fuel used) Road transport Automobile tyre and brake wear (fuel used) Road transport Automobile road abrasion (fuel used) Sum of approved adjustments (registre value) two Anona Vill (CLRTAP) National total this compliance calculations and checks (CLRTAP) Sum of approved adjustments from Anna Vill Sum of approved adjustments from Anna Vill Sum of approved adjustments from Anna Vill Sum of approved adjustments from Anna Vill Sum of approved adjustments from Anna Vill	(b)	NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE I	NE NE NE NE NE	NE NE NE	NE NE	NE NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	TJ NCV Mleage [10/6 km]
	1A3bv(fu) 1A3bv(fu) 1A3bvii(fu) 1A3bvii(fu) ADJUSTMENTS COMPLIANCE TOTAL (CLRTAP) ADJUSTMENTS AND COMPLIANCE COMPLIANCE	used) Road transport Casoline evaporation (fuel used) Road transport Automobile hyre and brake wear (fuel used) Road transport Automobile road abrasion (fuel used) Sum of approved adjustments (negative value) about form Americal (ICATAP) National facility for compliance calculations and checks (CLRTAP) Sum of approved adjustments from Americal Vicatary and other flesibilities (negative value) (NECO) Associal facility for compliance calculations and checks (CLRTAP)	(b) (b) (b)	NE NE NE 184.92	NE NE NE 134.19	NE NE NE 377.40	NE NE NE 71.02	NE NE NE O0.23	NE NE NE NE 78.30	NE NE NE NE 94.35	NE NE NE S.78	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE 2.18	NE NE NE 1.37	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE T1.97	NE NE NE NE 8.99	NE NE NE 9.36	NE NE NE 3.67	NE NE NE S.17	NE NE NE	NE NE NE 2.18	NE NE NE 700.87	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	TJ NCV Mleage [10/6 km]
	1A3bv(fu) 1A3bv(fu) 1A3bvii(fu) 1A3bvii(fu) ADJUSTMENTS COMPLIANCE TOTAL (CLATAP) RUJUSTMENTS AND	used) Road transport Cascoline evaporation (fuel used) Road transport Automobile tyre and brake event (fuel used) Road transport Automobile tyre and brake event (fuel used) Road transport Automobile road abrassion (fuel used) Sum of approved adjustments (regative uselve) from Annex Mi (CLRTAP) National total for compliance calculations and decide (CLRTAP) Sum of approved adjustments from Annex Mi of the Resibilities from Annex Mi of the Resibilities (regative value) (RDEO)	(b) (b) (b)	NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE	NE NE NE	NE NE NE NE 2.18	NE NE NE 1.37	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE	NE NE NE TI-97	NE NE NE	NE NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	TJ NCV Mleage [10/6 km]
MEMO ITEMS - NOT TO BE	1A3bv(fu) 1A3bv(fu) 1A3bvi(fu) 1A3bvii(fu) ADJUSTMENTS COMPLIANCE TOTAL (CURTAP) AND COMPLIANCE TOTAL (NECD)	used) Road transport Cascoline evaporation (fuel steed) Road transport Automobile tyre and brake wear (fuel steed) Road transport Automobile road abrasion fluel wheel) Road transport Automobile road abrasion fluel wheel) Sam of approved adjustments (reguline value) Sam of approved adjustments (reguline value) Sam of approved adjustments from Arnex W and other florabilities (reguline value) Sam of approved adjustments from Arnex W and other florabilities (reguline value) National total for compliance calculations and checks (INECD)	(b) (b) (b)	NE NE NE 184.92	NE NE NE 134.19	NE NE NE 377.40	NE NE NE 71.02	NE NE NE O0.23	NE NE NE NE 78.30	NE NE NE NE 94.35	NE NE NE S.78	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE 2.18	NE NE NE 1.37	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE T1.97	NE NE NE NE 8.99	NE NE NE 9.36	NE NE NE 3.67	NE NE NE S.17	NE NE NE	NE NE NE 2.18	NE NE NE 700.87	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	TJ NCV Mleage [10/6 km]
O_AvlCruise	1A3bv(lu) 1A3bvi(lu) 1A3bvi(lu) 1A3bvi(lu) 1A3bvi(lu) ADJUSTMENTS COMPLIANCE TOTAL (CLETAP) PUJUSTMENTS COMPLIANCE TOTAL (NECD) NCLUBED IN NA 1A3a(ii)	used) Kacal transport Cascoline evaporation (fuel used) Kacal transport Automobile byte and brake wear (fuel used) Road transport Automobile road abrassion (fuel used) Sum of approved adjustments (negative value) bon Arrise VIII (CLETAP) National total for compliance calculations and checks (CLETAP) Sum of approved adjustments from Averse VIII Sum of approved adjustments from Averse VIII Sum of approved adjustments from Averse VIII Total CLETAP National total for compliance calculations and checks (CLETAP) National total for compliance calculations and checks (CLETAP) National total for compliance calculations and checks (CLETAP) TOTAL TOTAL S International aviation crusise (civil)	(b) (b) (b)	NE NE NE 184.92 178.53	NE NE NE 134.19	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 71.02 71.02 NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 78.30 78.30	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE S.78	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 3.67	NE NE NE 5.17	NE NE 30.34	NE NE 2.18	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NO NO	TJ NCV Mleage [10% km] Mleage [10% km]
O_AwCruise O_AwCruise	1A3bv(lu) 1A3bv(lu) 1A3bv(lu) 1A3bv(lu) ADJUSTMENTS COMPLIANCE TOTAL (CLETAP) POJUSTMENTS AND COMPLIANCE TOTAL TOTAL 1A3a(0) 1A3a(0) 1A3a(0)	used) Kada fransport Casoline evaporation (fuel used) Kada fransport Automobile tyre and brake wear (fuel used) Road fransport Automobile road abrasion (fuel used) Sum of approved adjustments (negative value) bum Arriex ML (CLEYAP) Nasional total by compliance calculations and checks (CLEYAP) Sum of approved adjustments from Arriex ML endeds (CLEYAP) Nasional total by compliance calculations and checks (CLEYAP) National total for compliance calculations and checks (CLEYAP) National total for compliance calculations and checks (CLEYAP) TONAL TOTAL S **Termational aviation cruise (civil) Domestic aviation cruise (civil)	(b) (b) (b)	NE NE NE 184.92 178.53	NE NE NE 134.19	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 71.02 71.02 NO NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE S.78	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 3.67	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 30.34 NO NE	NE NE NE 2.18	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NO NO 0.00	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NO NO 0.00	TJ NCV Mleage [10/6 km] Mleage [10/6 km] TJ NCV
O_AviCruise O_AviCruise P_IntShipping	1ASID/(U) 1ASID/(U) 1ASID/(U) 1ASID/(U) ADJUSTMENTS COMPLIANCE TOTAL (CLETAP) AND COMPLIANCE TOTAL (NECD) 1ASII(I) 1ASII(I) 1ASII(I) 1ASII(I) 1ASII(I)	used) Kada fransport Cascoline evaporation (fuel used) Kada fransport Automobile tyre and brake wear (fuel used) Road fransport Automobile road abrasion (fuel used) Sum of approved adjust ments (negative value) bum Arriex ML (CLEYAP) Nasional total by compliance calculations and checks (CLEYAP) Sum of approved adjust ments from Arriex ML and other forbilletic negative value (for additional and advances (CLEYAP) Nasional total for compliance calculations and checks (CLEYAP) National total for compliance calculations and checks (CLEYAP) TONAL TOTAL S teternational aviation cruise (civil) Domestic aviation cruise (civil)	(b) (b) (b)	NE NE NE 184.92 178.53 NO 0.74 NO	NE NE NE 134.19 115.17 NO 0.01 NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NO NO NE NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NO NE NO NE NO NO NE NO	NE NE NE NE NE NE NE NE NO NO NE NO NO NE NO NO NE NO NO NE NE NO NE NE NE NE NE NE NE NE NE NE NE NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NO NO NE NO NO NE NO NO NE NE NO NE NE NO NE NE NE NE NE NE NE NE NE NE NE NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NO NO NE NO NO NE NO NO NE NO NE NO NE NE NO NE NE NO NE NE NE NE NE NE NE NE NE NE NE NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 71.97 71.97 NO NE NO	NE NE NE NE NE NE NO NO NO NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NO NE NO NE NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NO NE NO NE NO	NE NE NE NE NE NE NO NO NA NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NO NO NO NO NO	TJ NCV Mleage [10º6 km] Mleage [10º6 km] TJ NCV LTO TJ NCV
O_AwCruise O_AwCruise	1A3bv(lu) 1A3bv(lu) 1A3bv(lu) 1A3bv(lu) ADJUSTMENTS COMPLIANCE TOTAL (CLETAP) POJUSTMENTS AND COMPLIANCE TOTAL TOTAL 1A3a(0) 1A3a(0) 1A3a(0)	used) Road transport Cascoline evaporation (fuel used) Road transport Automobile hyre and brake wear (fuel used) Road transport Automobile road abrassion fluel used) Sum of approved adjustments (negative value) bun Arres VII (CLETAP) National total for compliance calculations and checks (CLETAP) Sum of approved adjustments from Arren VII. Sum of approved adjustments from Arren VII. The Arres VII. Sum of approved adjustments from Arren VII. The Arres VII. Sum of approved adjustments from Arren VII. The Arres VII. The Arres VII. The Arres VII. The Arres VII. The Arres VIII. The A	(b) (b) (b)	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 134.19	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 71.02 71.02 NO NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE S.78	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 2.18 2.18 NO NO NO NO NO NO NO NO NO NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 3.67	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 30.34 NO NE	NE NE NE 2.18	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE	NE NE NE NE NO NO NO NO NO	NE NE NE NE NO NO 0.00	TJ NCV Mleage [10º6 km] Mleage [10º6 km] TJ NCV LTO TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV
O_AulCruise O_AulCruise P_IntShipping z_Memo	1ASID/(U) 1ASID/(U) 1ASID/(U) 1ASID/(U) ADJUSTMENTS COMPLIANCE TOTAL (CLETAP) AND COMPLIANCE TOTAL (NECD) 1ASII(I) 1ASII(I) 1ASII(I) 1ASII(I) 1ASII(I)	used) Road transport Cascoline evaporation (fuel used) Road transport Automobile tyre and brake water (fuel used) Road transport Automobile tyre and brake water (fuel used) Road transport Automobile road abrassion (fuel used) Sam of approved adjustments (regatile value) from Annex VII (CLRTAP) Sam of approved adjustments for adjustments and decisis (CLRTAP) Sam of approved adjustments from Annex VII cut of their featibilities (regatile value) (RECD) National tools for compliance calculations and cascos (RECD) TORAL TOTALS tremational aviston cruise (civil) Domestic aviston cruise (civil) International marifeme navigation Autilitiateral operations	(b) (b) (b)	NE NE NE 184.92 178.53 NO 0.74 NO	NE NE NE NE 134.19 115.17 NO 0.01 NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NO NO NO NO NO NO NO NO NO NO NE NE NE NE NE NE NE NE NE NE NE NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 2.18 2.18 NO NO NO NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE 71.97 71.97 NO NE NO NO NO	NE NE NE NE NE NE NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NO NO NO NO NE NO NO NO NE NO NO NO NO NE NO NO NO NO NE NO NO NO NO NO NO NE NO NO NO NO NO NO NO NO NO NO NO NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NE NE NE NE NE NO NO NO NO	NE NE NE NE NE NO NO NO	NE NE NE NE NE NE NE NE NE NE NO NO NA NO NO NO NO NO NO NO NO NE NE NE NE NE NE NE NE NE NE NE NE NE	NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NO NO NO NO NO	TJ NCV Mleage [10º6 km] Mleage [10º6 km] TJ NCV LTO TJ NCV
O_AvlCruise O_AvlCruise P_IntShipping z_Memo	1ASID/(U) 1ASID/(U) 1ASID/(U) 1ASID/(U) ADJUSTMENTS COMPLIANCE TOTAL (CLETAP) AND COMPLIANCE TOTAL (NECD) 1ASII(I) 1ASII(I) 1ASII(I) 1ASII(I) 1ASII(I)	used) Road transport Casoline evaporation (fuel used) Road transport Automobile byre and brake wear (fuel used) Road transport Automobile road abrasion (fuel used) Sum of approved adjustments (negative value) but of the complete of th	(b) (b) (b)	NE NE NE NE 184.92 178.53 NO 0.74 NO NO	NE NE NE 134.19 115.17 NO 0.01 NO NO	NE NE NE NE NO 377.40 NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NE	NE	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NO NO NO NO	NE NE NE NE NE NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NO NO NO NO NO NO NO NO NO NO NO NE NE NE NE NE NE NE NE NE NE NE NE NE	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NE NE NE NE NE NE NE NE NE NE N	NE NE NE NO NO NO NO NO NO	TJ NCV Mieage [10% km] Mieage [10% km] TJ NCV LTO TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV TJ NCV

8. RECALCULATION AND IMPROVEMENTS

The main objective of recalculation is to improve the emissions inventory and the quality of reports.

The recalculations we have done in this Inventory:

1A2gviii. We changed the data on Autoproducers final emergy consuption for subcategories gaseous fuels, biofuels and other fuels in 2021, because the data in Energy Balance has been changed.

1A2gviii We changed the data on Non-metallic minerals, Machinery, Mining and quarring, Wood and wood products, Textiles and leather, Not elsewhere specified (Industry) for subcategory Biofuels in 2021, because the data in Energy Balance has been changed.

2a5c We entered data for Uncontrolled handling in 2021 because Stastical Office of Republic Serbia provide us later.

2B10a We entered data for Phosphate fertilizers in 2021 because Stastical Office of Republic Serbia provide us later.

2H2 The recalculation was done for subcategory Wine: Wine unspecified colour in 2021 because of data change in Stastical Office of Republic Serbia.

3B4giii We entered whole number of animals from 2020. instead rounded because of data change in Stastical Office of Republic Serbia yearbook.

3B4giv We entered whole number of animals from 2020. instead rounded because of data change in Stastical Office of Republic Serbia yearbook.

5D2 We entered data for Uncontrolled handling in 2021 because Stastical Office of Republic Serbia provide us later.

9. PROJECTIONS

Parties shall report their latest available projections at least every four years, and provide any updated projections annually by 15-th of February for the years 2020, 2025 and 2030 etc.

The NEC Directive has been partially transposed into national legislation through the Law on Air Protection ("Official Gazette of the Republic of Serbia", No. 36/09 and 10/13), Regulation on emission limit values of pollutants in the air from stationary pollution sources, other than combustion plants ("Official Gazette of the Republic of Serbia", No. 111/15) and the Regulation on methodology for development of emission inventory and projections of air pollutants ("Official Gazette of RS", No. 03/2019).

For the calculation and evaluation of its emissions, both for the base year and the future emissions scenario, in order to fulfill its obligations under the NEC Directive, the Republic of Serbia will use the GAINS model. Emissions for 2005, as base, are calculated directly in the GAINS model, while the input data for the projections from the Energy and Agriculture sectors will be prepared in the PRIMES and CAPRI models, which are used in the framework of the Climate Change Strategy. This way of combining these models is in line with good EU practice.

10. REPORTING OF GRIDDED EMISSIONS AND LPS

In accordance with the ceip reporting instructions, Serbia will provide data on lps emissions and gridded data by May 1. 2025.

11. EMISSION TRENDS PER SECTOR

Table 122. Emission trends for NOx (kt) 1990-2022

NOx	A Public Power	B Industry	C Other Stationar y Combusti on	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	97.6884	17.8099	6.8737	1.1361	0.0263	49.3183	8.9636	0.0006	1.1997	183.0165
1991	87.7269	17.1394	5.4525	0.8373	0.0294	48.0269	7.4387	0.0007	1.0845	167.7364
1992	81.1191	18.3124	6.4813	0.5688	0.0250	43.9833	5.3479	0.0007	1.1711	157.0096
1993	75.5511	12.1754	6.3424	0.2634	0.0266	31.0406	3.8019	0.0010	0.9939	130.1962
1994	69.2235	12.2891	5.7617	0.3200	0.0208	44.4823	3.6486	0.0008	1.1698	136.9167
1995	87.7568	10.8152	4.2460	0.2898	0.0202	43.5880	3.2040	0.0009	1.8768	151.7978
1996	85.1231	16.2460	5.3919	0.5701	0.0181	42.8326	6.2663	0.0009	2.2116	158.6606
1997	92.0873	17.3309	5.4537	0.7689	0.0153	43.1936	6.6135	0.0010	3.3351	168.7994
1998	91.6409	16.7744	6.3470	0.7295	0.0220	43.2303	6.8479	0.0018	2.9543	168.5481
1999	68.3998	12.8114	5.9372	0.1972	0.0192	38.2825	4.6618	0.0019	1.8452	132.1563
2000	77.2337	12.8163	6.0374	0.2417	0.0239	43.8025	4.4458	0.0019	1.9702	146.5735
2001	75.9003	14.9827	5.8956	0.6206	0.0226	45.8723	4.9645	0.0018	3.2416	151.5020
2002	79.5642	16.5228	6.2073	0.7884	0.0256	44.8116	6.6430	0.0019	7.0862	161.6510
2003	83.2911	16.2112	6.4114	0.9054	0.0259	45.4910	7.0213	0.0021	5.4832	164.8425
2004	85.6461	18.5756	6.6030	0.9435	0.0272	45.1423	11.9756	0.0019	10.8269	179.7422
2005	74.4850	16.9131	5.9601	0.7496	0.0312	44.8415	12.2386	0.0019	10.0592	165.2803
2006	78.6576	17.1978	4.5519	0.7542	0.0329	43.2882	12.6627	0.0020	9.7400	166.8873
2007	78.4898	16.9924	7.3493	0.7819	0.0383	43.7389	14.1800	0.0022	11.8288	173.4017
2008	81.3023	17.5745	6.8053	0.7604	0.0376	43.6962	9.8005	0.0022	10.5716	170.5504
2009	74.9015	12.8810	7.2484	0.6932	0.0369	41.5340	10.1799	0.0023	13.5397	161.0167
2010	68.4840	15.6429	7.7006	0.6875	0.0394	38.5274	8.6251	0.0024	7.9247	147.6341
2011	76.9945	17.8641	9.3223	0.5675	0.0492	37.3025	10.4301	0.0023	9.0869	161.6194
2012	72.0887	18.3172	7.5808	0.5152	0.0489	30.2346	10.0578	0.0023	13.3304	152.1760
2013	76.2285	15.2150	6.0875	0.6605	0.0429	29.9274	12.2439	0.0025	12.0389	152.4471
2014	60.0298	13.2621	5.7318	0.6279	0.0379	29.9071	7.7359	0.0025	8.2485	125.5836
2015	73.3104	13.4313	5.9281	0.7053	0.0601	35.2210	7.7451	0.0022	8.6422	145.0458
2016	72.6041	14.2934	6.6022	0.7459	0.0748	72.6834	7.9379	0.0025	10.9412	185.8855
2017	73.6140	14.2314	6.1025	0.8011	0.0827	72.5616	7.0424	0.0028	10.0449	184.4835
2018	69.0835	14.6218	6.0187	0.8549	0.0763	69.1247	6.7394	0.0028	6.3800	172.9022
2019	69.3641	12.3637	6.0882	0.7539	0.0722	67.4707	6.4608	0.0028	6.2469	168.8232
2020	73.0731	11.3314	8.0234	0.7975	0.0760	66.5778	7.4667	0.0032	8.8809	176.2301
2021	68.0851	11.5822	7.9748	0.8609	0.0795	71.2497	10.0260	0.0036	4.3555	174.2173
2022	67.7757	14.3169	8.4693	0.9920	0.0829	75.9215	10.9620	0.0029	6.3941	184.9173

Table 123. Emission trends for NMVOC (kt) 1990-2022

NMVOC	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.6139	15.8514	38.8170	41.2610	23.6752	36.8884	0.6932	0.0001	33.3979	191.1981
1991	0.5908	14.8402	31.4097	29.7676	21.6440	35.1548	0.5962	0.0002	32.7904	166.7938
1992	0.5581	14.0056	29.5498	34.8059	20.2969	32.8379	0.3811	0.0002	29.9827	162.4182
1993	0.4858	15.8975	29.5074	30.8802	19.0689	21.5815	0.3656	0.0002	30.6545	148.4415
1994	0.4398	8.4027	27.7685	31.7056	18.6348	32.2094	0.3468	0.0002	27.5482	147.0561
1995	0.5486	7.4666	23.6473	33.8077	18.3034	30.8332	0.2748	0.0002	30.3124	145.1943
1996	0.5426	9.1545	25.8642	32.2378	18.4477	30.5721	0.5442	0.0002	30.3815	147.7449
1997	0.5930	7.5006	25.9498	37.8633	18.5237	31.8345	0.5584	0.0002	29.9604	152.7839
1998	0.5762	7.6487	28.1709	37.5388	18.6655	33.6301	0.5730	0.0002	29.4120	156.2154
1999	0.4346	7.3376	27.4843	24.9469	17.7608	30.1250	0.3977	0.0002	29.4873	137.9745
2000	0.4842	9.4078	28.8522	28.3162	17.9876	35.2062	0.3542	0.0002	28.3395	148.9481
2001	0.4861	9.4370	28.3480	28.4576	17.9436	34.6655	0.4082	0.0002	26.7266	146.4728
2002	0.5116	10.0693	29.3715	29.7985	17.6840	33.2589	0.5899	0.0003	26.0814	147.3652
2003	0.5356	9.7210	29.9570	31.4582	17.6247	35.1062	0.6360	0.0003	25.8440	150.8830
2004	0.5623	11.6145	30.1941	33.4826	17.9444	32.6389	1.1842	0.0040	25.5442	153.1693
2005	0.4790	10.4710	28.3350	33.8864	18.0872	30.9157	1.2138	0.0040	25.2179	148.6099
2006	0.4962	11.4806	24.6996	35.1602	18.0602	29.1014	1.2525	0.0041	25.8279	146.0827
2007	0.5009	11.5145	29.0391	35.4271	17.9319	28.5875	1.7750	0.0041	25.2011	149.9811
2008	0.5163	12.1728	26.0683	36.5509	18.0121	26.6757	0.9864	0.0036	23.8412	144.8274
2009	0.4781	10.6083	30.4546	35.8410	17.5407	24.4851	1.1101	0.0037	23.5814	144.1031
2010	0.4470	11.3925	29.7365	35.3123	17.2789	18.4762	1.1671	0.0035	22.3311	136.1452
2011	0.5000	11.3876	29.0509	37.4389	17.2025	16.8348	1.4982	0.0032	22.0086	135.9248
2012	0.4746	10.3251	29.2525	34.9425	17.0610	15.5231	1.2557	0.0030	21.2796	130.1171
2013	0.4998	12.2772	24.8013	37.8595	17.5922	13.6272	1.7206	0.0030	21.0643	129.4452
2014	0.4049	11.6918	25.2342	29.3845	17.3439	12.2495	0.9382	0.0024	21.5297	118.7792
2015	0.4894	9.9147	24.9196	36.1602	17.4816	14.0258	0.7690	0.0026	21.4699	125.2327
2016	0.4848	12.3582	27.1433	36.9166	18.1874	13.3521	0.7719	0.0027	20.9507	130.1678
2017	0.4947	12.3726	25.2545	38.0440	17.3903	12.6991	0.6922	0.0024	20.8048	127.7547
2018	0.4688	10.9021	25.7329	36.7974	17.3973	11.1059	0.6554	0.0017	20.7913	123.8528
2019	0.4696	10.8251	26.5356	37.3102	17.2385	10.1693	0.6225	0.0016	20.7245	123.8969
2020	0.4937	10.8603	39.5846	38.0232	16.7625	9.7419	0.7519	0.0015	20.6952	136.9149
2021	0.4862	11.0323	39.3246	35.9749	16.4525	10.5020	0.9358	0.0016	20.0821	134.7919
2021	0.4876	11.4677	39.0354	35.8162	16.0561	11.2621	1.0410	0.0016	19.0228	134.1905
2022	0.6139	15.8514	38.8170	41.2610	23.6752	36.8884	0.6932	0.0001	33.3979	191.1981

Table 124 Emission trends for SOx (kt) 1990-2022

SOx	A Public Power	B Industry	C Other Stationar y Combusti on	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	519.0920	29.9822	22.0086	2.9316	NA	1.7353	0.8420	0.0001	0.0011	576.5929
1991	458.9473	31.2084	14.9363	2.1617	NA	1.6474	0.5758	0.0001	0.0011	509.4781
1992	421.7496	40.8737	25.1438	1.4663	NA	1.5000	0.5356	0.0001	0.0012	491.2701
1993	400.1567	30.6693	25.3482	0.6775	NA	1.0082	0.1108	0.0001	0.0011	457.9721
1994	367.7904	26.5897	22.0683	0.8241	NA	1.4949	0.1294	0.0001	0.0011	418.8979
1995	468.2358	17.1400	11.3939	0.7464	NA	1.4733	0.1872	0.0001	0.0011	499.1779
1996	452.0946	28.4973	17.6437	1.4702	NA	1.4739	0.4063	0.0001	0.0011	501.5872
1997	487.9212	31.3717	17.7504	1.9838	NA	1.5303	0.4885	0.0001	0.0011	541.0471
1998	488.3078	33.2235	23.9329	1.8820	NA	1.5739	0.5293	0.0003	0.0011	549.4507
1999	363.6756	30.3653	22.1210	0.5074	NA	1.4149	0.3325	0.0003	0.0011	418.4180
2000	411.7386	27.5669	21.2169	0.6215	NA	1.5773	0.3993	0.0003	0.0010	463.1219
2001	402.3085	32.5102	20.1432	1.6001	NA	1.6976	0.4038	0.0002	0.0011	458.6646
2002	420.8572	36.1526	22.4217	2.0329	NA	1.6951	0.4100	0.0003	0.0010	483.5708
2003	440.6086	39.4681	23.7635	2.3355	NA	1.7268	0.3936	0.0003	0.0010	508.2975
2004	450.2567	38.7864	24.3208	2.4336	NA	1.7252	0.3848	0.0003	0.0010	517.9088
2005	394.2935	25.1517	20.2215	1.9330	NA	1.6981	0.3863	0.0003	0.0010	443.6855
2006	418.4635	26.7344	10.6464	1.9448	NA	1.6460	0.4106	0.0003	0.0010	459.8470
2007	416.3026	24.9309	23.5422	2.0169	NA	1.5893	0.4588	0.0003	0.0010	468.8420
2008	431.6630	24.1867	19.7226	1.9607	NA	1.5224	0.4581	0.0003	0.0011	479.5149
2009	397.1408	16.1375	14.8789	1.7880	NA	1.4309	0.4356	0.0003	0.0010	431.8132
2010	361.2132	19.8440	17.1426	1.7734	NA	1.0041	0.3664	0.0003	0.0010	401.3451
2011	406.5258	25.0340	22.1193	1.4640	NA	0.8379	0.3287	0.0003	0.0010	456.3111
2012	379.2109	23.9214	14.5192	1.3293	NA	0.6885	0.2603	0.0003	0.0009	419.9308
2013	401.3513	18.5665	11.8212	1.7044	NA	0.6946	0.2873	0.0003	0.0009	434.4266
2014	313.5305	17.7680	8.7963	1.6210	NA	0.7154	0.2544	0.0003	0.0009	342.6869
2015	330.8988	19.5570	8.9776	1.8209	NA	0.8660	0.2705	0.0003	0.0009	362.3920
2016	327.7101	26.8353	12.2712	1.9253	NA	4.0554	0.2703	0.0003	0.0009	373.0689
2017	331.5835	20.7527	10.8618	2.0676	NA	4.3975	0.2267	0.0004	0.0009	369.8911
2018	310.3007	21.5386	9.5813	2.2068	NA	4.5468	0.2169	0.0004	0.0008	348.3924
2019	361.7775	18.4200	9.8788	1.9465	NA	4.9278	0.2208	0.0004	0.0008	397.1726
2020	381.3336	16.7095	12.2095	2.0592	NA	5.1279	0.1812	0.0004	0.0009	417.6222
2021	349.4744	13.4410	7.2435	2.2231	NA	5.6276	0.5224	0.0005	0.0009	378.5334
2022	347.3261	13.9327	6.9418	2.5621	NA	6.1273	0.5049	0.0004	0.0008	377.3961

Table 125. Emission trends for NH3 (kt) 1990-2022

NH3	A Public Power	B Industry	C Other Stationary Combustio n	D Fugitive	E Solvents	F Road Transpor t	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	NA	8.5014	3.4316	0.0130	0.0631	0.0268	0.0008	8.6285	105.3468	126.0121
1991	NA	6.7533	2.9727	0.0071	0.0693	0.0255	0.0008	8.5512	104.8775	123.2573
1992	NA	5.9298	2.2125	0.0102	0.0589	0.0437	0.0005	8.4586	93.9530	110.6672
1993	NA	4.0239	2.2124	0.0083	0.0621	0.0274	0.0005	8.3679	96.8091	111.5117
1994	NA	5.6449	2.1614	0.0080	0.0487	0.0451	0.0005	8.2383	87.5224	103.6692
1995	NA	5.2096	2.1591	0.0068	0.0473	0.0488	0.0004	8.1074	99.1187	114.6981
1996	NA	8.0858	2.1603	0.0087	0.0425	0.0605	0.0007	7.9570	102.5300	120.8454
1997	NA	8.6217	2.1604	0.0097	0.0361	0.0757	0.0007	7.8030	100.8155	119.5226
1998	NA	6.6626	2.1616	0.0093	0.0514	0.0977	0.0007	7.6321	97.9453	114.5608
1999	NA	2.9264	2.1612	0.0060	0.0448	0.1025	0.0005	7.4822	98.7546	111.4782
2000	NA	2.6857	2.3570	0.0063	0.0559	0.1382	0.0004	7.3008	94.3116	106.8559
2001	NA	2.9601	2.3567	0.0081	0.0531	0.1456	0.0005	7.1583	89.0449	101.7273
2002	NA	4.6772	2.3573	0.0092	0.0604	0.1778	0.0008	6.7440	92.2268	106.2535
2003	NA	3.9662	2.3577	0.0100	0.0610	0.2043	0.0009	6.6428	90.0789	103.3218
2004	NA	6.2987	2.3578	0.0104	0.0642	0.2335	0.0017	6.4601	94.4178	109.8441
2005	NA	6.1064	2.3567	0.0080	0.0734	0.2488	0.0017	6.2502	91.7459	106.7911
2006	NA	3.5122	2.3508	0.0077	0.0779	0.2675	0.0018	6.1427	92.3163	104.6770
2007	NA	5.6650	2.3493	0.0075	0.0904	0.2941	0.0027	6.0270	91.9987	106.4346
2008	NA	2.6933	1.9631	0.0076	0.0887	0.3012	0.0018	5.8150	85.3101	96.1809
2009	NA	2.5892	2.9183	0.0063	0.0866	0.3226	0.0019	5.4436	89.5114	100.8798
2010	NA	4.5761	2.8175	0.0070	0.0924	0.3772	0.0015	5.2732	78.3790	91.5240
2011	NA	6.3614	2.5653	0.0065	0.1144	0.3787	0.0020	5.0366	77.7394	92.2044
2012	NA	6.9990	2.7737	0.0059	0.1132	0.3426	0.0020	5.1275	80.1597	95.5237
2013	NA	7.5591	2.3537	0.0067	0.0995	0.3480	0.0025	4.8618	76.9892	92.2205
2014	NA	4.9137	2.5031	0.0047	0.0881	0.3549	0.0014	4.7013	73.9401	86.5073
2015	NA	3.7008	2.4888	0.0054	0.1392	0.4076	0.0014	4.6319	74.5846	85.9598
2016	NA	2.3331	2.5648	0.0063	0.1732	0.7042	0.0014	4.3705	74.7476	84.9011
2017	NA	4.1386	2.3606	0.0071	0.1908	0.7159	0.0013	4.2462	73.0318	84.6923
2018	NA	4.5611	2.4699	0.0068	0.1759	0.6986	0.0012	4.1337	67.3602	79.4073
2019	NA	0.2049	2.5587	0.0059	0.1663	0.6897	0.0012	3.8900	66.3977	73.9145
2020	NA	0.1930	3.9802	0.0062	0.1752	0.6871	0.0015	3.4743	71.1142	79.6317
2021	NA	0.1955	4.1903	0.0060	0.1832	0.7092	0.0018	3.5671	63.3799	72.2331
2022	NA	0.3347	4.1893	0.0058	0.1910	0.7313	0.0020	3.2515	62.3117	71.0173

Table 126. Emission trends for PM2,5 (kt) 1990-2022

PM2.5	A Public Power	B Industry	C Other Stationar Y Combusti on	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	1.4548	4.7792	44.1754	0.3678	0.6197	2.1499	0.2824	0.0000	0.8658	54.6950
1991	1.5122	3.3027	36.4507	0.2198	0.6986	2.0668	0.2181	0.0000	0.8520	45.3209
1992	1.3591	4.5410	32.3086	0.3277	0.5946	1.9035	0.2043	0.0000	0.7947	42.0333
1993	1.1276	3.6610	32.2879	0.3012	0.6187	1.3802	0.0609	0.0000	0.8085	40.2461
1994	1.0144	3.4477	30.6412	0.2987	0.5306	1.9339	0.0620	0.0000	0.7453	38.6739
1995	1.2590	2.8223	27.1088	0.2944	0.5408	1.9145	0.0731	0.0000	0.8006	34.8135
1996	1.3113	3.5589	29.0322	0.2950	0.4768	1.9125	0.1461	0.0000	0.7980	37.5308
1997	1.4764	3.6756	29.0998	0.3233	0.4650	1.9029	0.1676	0.0000	0.7898	37.9004
1998	1.3411	3.8400	31.0241	0.3241	0.5694	1.8842	0.1779	0.0001	0.7785	39.9393
1999	1.0716	3.1782	30.4347	0.2329	0.4642	1.6565	0.1178	0.0001	0.7785	37.9345
2000	1.1575	3.1196	32.2330	0.2527	0.5020	1.8742	0.1309	0.0001	0.7560	40.0262
2001	1.1425	3.3171	31.8119	0.2536	0.4609	1.9927	0.1342	0.0001	0.7249	39.8378
2002	1.0870	3.6453	32.6714	0.2643	0.5635	1.9474	0.1418	0.0001	0.7092	41.0300
2003	1.1391	3.7974	33.1649	0.2802	0.5870	1.9835	0.1380	0.0001	0.7037	41.7938
2004	1.1405	4.0732	33.3649	0.2873	0.5895	1.9966	0.1523	0.0001	0.7010	42.3054
2005	1.1639	2.9578	31.8059	0.2636	0.6619	2.0110	0.1521	0.0001	0.6944	39.7107
2006	1.1805	3.0838	28.6660	0.2682	0.6593	1.9923	0.1592	0.0001	0.7064	36.7157
2007	1.1855	3.0716	32.3106	0.2645	0.7132	2.0425	0.5947	0.0001	0.6963	40.8789
2008	1.1841	3.1974	28.3924	0.2752	0.7479	2.0784	0.5271	0.0001	0.6710	37.0737
2009	1.1438	2.2766	35.4616	0.2553	0.7603	2.0370	0.5020	0.0001	0.6540	43.0907
2010	1.0313	3.0040	34.6148	0.2658	0.7461	1.9174	0.3704	0.0001	0.6291	42.5790
2011	1.1047	3.6571	33.2752	0.2828	0.8752	1.9389	0.4744	0.0001	0.6236	42.2320
2012	1.0582	3.2907	33.9190	0.2620	0.8820	1.6227	0.4775	0.0001	0.6090	42.1211
2013	1.0748	3.6981	28.7287	0.2759	0.7854	1.6344	0.5599	0.0001	0.6061	37.3634
2014	0.8617	2.8010	29.5159	0.1927	0.7265	1.6518	0.3371	0.0001	0.6178	36.7046
2015	1.0543	3.1784	29.2345	0.2391	1.0658	2.1265	0.3425	0.0001	0.6136	37.8548
2016	1.0441	3.7087	31.3305	0.2544	1.4439	4.6128	0.3373	0.0001	0.6022	43.3340
2017	1.0506	3.4376	28.9873	0.2703	1.5761	4.7013	0.3184	0.0001	0.5973	40.9391
2018	0.9908	3.3421	29.7375	0.2510	1.4821	4.5561	0.3191	0.0001	0.6015	41.2803
2019	0.9770	3.3275	30.7240	0.2485	1.4598	4.5468	0.3424	0.0001	0.5981	42.2241
2020	1.0262	3.1863	46.4834	0.2544	1.4777	4.5750	0.3823	0.0001	0.5963	57.9818
2021	1.0091	2.9372	46.8970	0.2313	1.4922	5.2192	0.5315	0.0002	0.5836	58.9014
2022	1.0423	3.7391	46.6694	0.2133	1.5696	5.8634	0.5698	0.0001	0.5625	60.2295

Table 127. Emission trends for PM10 (kt) 1990-2022

PM10	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	3.3141	10.6249	45.3133	2.1932	0.7323	2.5266	0.3085	0.0000	8.2441	73.2571
1991	3.2026	8.3021	37.4093	1.4323	0.8274	2.4328	0.2371	0.0000	8.2646	62.1082
1992	2.9032	9.0364	33.1248	1.9362	0.7041	2.2477	0.2226	0.0000	7.9807	58.1558
1993	2.5576	6.6717	33.1066	1.8012	0.7284	1.6227	0.0651	0.0000	8.0182	54.5715
1994	2.3241	6.5733	31.4203	1.8292	0.6400	2.2833	0.0666	0.0000	7.7759	52.9127
1995	2.9195	6.0802	27.8044	1.8969	0.6597	2.2586	0.0790	0.0000	8.0432	49.7415
1996	2.9363	7.3443	29.7783	1.8165	0.5795	2.2562	0.1588	0.0000	8.1083	52.9781
1997	3.2442	7.5197	29.8464	2.0224	0.5826	2.2586	0.1825	0.0000	8.0393	53.6959
1998	3.0792	7.9405	31.8203	2.0503	0.6889	2.2488	0.1940	0.0001	8.0112	56.0333
1999	2.3830	6.1214	31.2166	1.4281	0.5526	1.9859	0.1283	0.0001	8.0234	51.8394
2000	2.6303	6.0446	33.0632	1.5823	0.5740	2.2515	0.1431	0.0001	7.8318	54.1210
2001	2.5831	5.9955	32.6344	1.5384	0.5220	2.4130	0.1465	0.0001	7.6841	53.5171
2002	2.5680	6.7168	33.5106	1.5810	0.6529	2.3768	0.1541	0.0001	7.6406	55.2009
2003	2.6896	6.5838	34.0140	1.6709	0.6865	2.4303	0.1497	0.0001	7.6294	55.8544
2004	2.7183	7.3669	34.2183	1.7125	0.6803	2.4615	0.1634	0.0001	7.5924	56.9137
2005	2.5872	6.4348	32.6293	1.6805	0.7590	2.4982	0.1632	0.0001	7.5905	54.3429
2006	2.6795	6.7350	29.4128	1.7455	0.7423	2.5113	0.1709	0.0001	7.6247	51.6220
2007	2.6786	6.5921	33.1553	1.7450	0.7822	2.6043	0.6057	0.0001	7.6179	55.7811
2008	2.7219	6.6019	29.1014	1.8164	0.8401	2.6645	0.5387	0.0001	7.4715	51.7564
2009	2.5727	4.5491	36.4182	1.7617	0.8639	2.6222	0.5129	0.0001	7.4614	56.7621
2010	2.3246	5.9011	35.5656	1.7722	0.8234	2.4965	0.3796	0.0001	7.3133	56.5762
2011	2.5468	6.8467	34.2046	1.9245	0.9439	2.5335	0.4817	0.0001	7.2716	56.7534
2012	2.4094	6.1228	34.8307	1.7893	0.9563	2.1380	0.4827	0.0001	7.0948	55.8240
2013	2.4934	6.6695	29.4946	1.8859	0.8564	2.1694	0.5653	0.0001	7.1419	51.2766
2014	1.9737	5.8344	30.2990	1.3647	0.8052	2.2101	0.3425	0.0001	7.2424	50.0722
2015	2.4171	6.6844	30.0175	1.7165	1.1481	2.8212	0.3486	0.0001	7.1961	52.3495
2016	2.3935	7.6477	32.1587	1.7745	1.6046	6.2908	0.3434	0.0001	7.0905	59.3038
2017	2.4143	7.0181	29.7432	1.8402	1.7436	6.4788	0.3233	0.0001	7.0206	56.5822
2018	2.2680	7.0955	30.5142	1.7295	1.6511	6.3752	0.3234	0.0001	7.1344	57.0914
2019	2.2561	7.4202	31.5276	1.7612	1.6486	6.4372	0.3468	0.0001	7.0884	58.4862
2020	2.3739	6.9523	47.7094	1.7988	1.6465	6.5347	0.3860	0.0001	7.1213	74.5229
2021	2.2570	6.9714	48.1459	1.6459	1.6423	7.7687	0.5450	0.0002	7.0496	76.0259
2021	2.2895	8.2671	47.9211	1.5574	1.7331	9.0027	0.5820	0.0001	6.9510	78.3041
2022	3.3141	10.6249	45.3133	2.1932	0.7323	2.5266	0.3085	0.0000	8.2441	73.2571

Table 128. Emission trends for TSP (kt) 1990-2022

TSP	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	4.8780	77.5659	48.0503	4.7033	5.8847	0.7354	0.3078	0.0000	16.0326	158.1582
1991	4.6885	62.4302	39.5970	3.0508	4.9405	0.7138	0.2375	0.0000	16.1929	131.8512
1992	4.2503	54.6888	35.2609	4.1685	2.4003	0.6723	0.2245	0.0000	15.0892	116.7549
1993	3.7618	36.5570	35.2397	3.8833	1.0167	0.4745	0.0658	0.0000	15.2235	96.2225
1994	3.4210	47.4316	33.4171	3.9357	1.0550	0.6812	0.0673	0.0000	14.3580	104.3669
1995	4.3016	44.7323	29.4619	4.0695	1.3095	0.6703	0.0780	0.0000	15.5648	100.1880
1996	4.3167	65.8529	31.6173	3.8990	2.1176	0.6696	0.1584	0.0000	16.0476	124.6792
1997	4.7634	69.7988	31.6924	4.3322	2.0814	0.6928	0.1819	0.0000	15.5964	129.1395
1998	4.5340	57.6741	33.8490	4.3904	1.9504	0.7092	0.1933	0.0001	15.5028	118.8032
1999	3.5021	29.4354	33.1892	3.0743	1.1025	0.6409	0.1286	0.0001	15.7606	86.8338
2000	3.8711	27.8106	35.1222	3.4008	1.4990	0.7326	0.1426	0.0001	14.8725	87.4515
2001	3.7990	29.3961	34.6518	3.3008	1.6012	0.8135	0.1457	0.0001	14.1996	87.9079
2002	3.7850	41.9063	35.6124	3.3907	2.2072	0.8306	0.1531	0.0001	14.0244	101.9098
2003	3.9642	36.6456	36.1640	3.5820	1.8626	0.8628	0.1485	0.0001	13.9833	97.2131
2004	4.0064	54.1553	36.3875	3.6708	3.5387	0.8956	0.1620	0.0001	13.8174	116.6337
2005	3.8018	53.3787	34.6454	3.5920	4.5311	0.9383	0.1616	0.0001	13.7237	114.7728
2006	3.9441	37.3188	31.1302	3.7268	4.9445	0.9983	0.1689	0.0001	14.1052	96.3370
2007	3.9403	51.2048	35.2158	3.7217	5.0358	1.0790	0.6036	0.0001	13.8957	114.6967
2008	4.0080	30.9296	30.9729	3.8757	4.4042	1.1247	0.5365	0.0001	13.0311	88.8827
2009	3.7830	25.4897	38.5201	3.7504	3.3898	1.1245	0.5108	0.0001	13.6686	90.2369
2010	3.4137	41.2609	37.6211	3.7806	3.2428	1.1152	0.3774	0.0001	12.9265	103.7383
2011	3.7446	53.2949	36.2324	4.1063	3.0538	1.1450	0.4793	0.0001	12.7084	114.7648
2012	3.5397	56.2769	36.8497	3.8173	2.4917	0.9899	0.4801	0.0001	12.2292	116.6746
2013	3.6634	60.0363	31.2063	4.0196	2.1906	1.0296	0.5627	0.0001	12.1499	114.8586
2014	2.8943	44.1517	32.0240	2.8979	0.8576	1.0738	0.3391	0.0001	12.5637	96.8022
2015	3.5464	38.6483	31.7175	3.6449	1.2030	1.3382	0.3452	0.0001	12.6587	93.1022
2016	3.5115	31.1104	34.0299	3.7737	1.7116	2.8681	0.3400	0.0001	12.2384	89.5837
2017	3.5426	41.4661	31.4851	3.9182	1.8552	3.0390	0.3200	0.0001	12.0332	97.6595
2018	3.3247	45.1473	32.2800	3.6765	1.7637	3.1103	0.3194	0.0001	12.0463	101.6683
2019	3.3102	18.1950	33.3485	3.7415	1.7744	3.2424	0.3427	0.0001	11.9830	75.9378
2020	3.4837	16.1292	50.4137	3.8209	1.7591	3.3642	0.3842	0.0002	12.0775	91.4325
2021	3.2961	17.0036	50.7926	3.4908	1.7423	4.0180	0.5422	0.0002	11.8566	92.7424
2022	3.3300	18.5830	50.5413	3.2926	1.8420	4.6718	0.5779	0.0001	11.5090	94.3478

Table 129. Emission trends for BC (kt) 1990-2022

ВС	A Public Power	B Industry	C Other Stationar Y Combusti on	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0248	0.1060	4.1311	0.0630	0.0018	0.0002	0.0012	NA	0.0600	4.3880
1991	0.0350	0.0899	3.4629	0.0263	0.0020	0.0002	0.0011	NA	0.0596	3.6769
1992	0.0302	0.1082	2.9073	0.0615	0.0017	0.0001	0.0007	NA	0.0637	3.1734
1993	0.0194	0.0847	2.9060	0.0571	0.0018	0.0001	0.0006	NA	0.0607	3.1304
1994	0.0166	0.0764	2.7815	0.0526	0.0014	0.0001	0.0006	NA	0.0605	2.9898
1995	0.0193	0.0498	2.5554	0.0444	0.0014	0.0001	0.0005	NA	0.0597	2.7306
1996	0.0242	0.0792	2.6785	0.0489	0.0012	0.0001	0.0009	NA	0.0599	2.8929
1997	0.0298	0.0846	2.6828	0.0497	0.0010	0.0001	0.0010	NA	0.0592	2.9081
1998	0.0218	0.0927	2.8059	0.0483	0.0015	0.0002	0.0010	NA	0.0585	3.0299
1999	0.0205	0.0828	2.7682	0.0414	0.0013	0.0001	0.0007	NA	0.0580	2.9730
2000	0.0200	0.0749	2.9579	0.0420	0.0016	0.0002	0.0006	NA	0.0558	3.1529
2001	0.0201	0.0882	2.9310	0.0427	0.0015	0.0002	0.0007	NA	0.0568	3.1411
2002	0.0144	0.1004	2.9860	0.0451	0.0017	0.0002	0.0010	NA	0.0560	3.2049
2003	0.0152	0.1105	3.0176	0.0476	0.0017	0.0002	0.0011	NA	0.0553	3.2492
2004	0.0139	0.1149	3.0303	0.0488	0.0018	0.0002	0.0020	NA	0.0555	3.2675
2005	0.0223	0.0637	2.9306	0.0369	0.0021	0.0002	0.0020	NA	0.0557	3.1135
2006	0.0207	0.0712	2.7282	0.0347	0.0022	0.0002	0.0021	NA	0.0534	2.9126
2007	0.0211	0.0777	2.9636	0.0320	0.0026	0.0002	0.2830	NA	0.0549	3.4351
2008	0.0192	0.1366	2.5993	0.0337	0.0025	0.0002	0.2478	NA	0.0571	3.0966
2009	0.0209	0.1267	3.4094	0.0251	0.0025	0.0002	0.2330	NA	0.0552	3.8732
2010	0.0180	0.1871	3.3185	0.0314	0.0027	0.0002	0.1605	NA	0.0553	3.7737
2011	0.0169	0.2202	3.1692	0.0317	0.0033	0.0003	0.2347	NA	0.0566	3.7328
2012	0.0174	0.2391	3.2702	0.0290	0.0033	0.0002	0.2475	NA	0.0460	3.8528
2013	0.0154	0.2763	2.7622	0.0294	0.0029	0.0002	0.2937	NA	0.0465	3.4266
2014	0.0130	0.2130	2.8705	0.0151	0.0026	0.0002	0.1636	NA	0.0494	3.3275
2015	0.0161	0.2265	2.8481	0.0175	0.0041	0.0003	0.1636	NA	0.0473	3.3234
2016	0.0159	0.2126	3.0110	0.0230	0.0051	0.0702	0.1592	NA	0.0473	3.5443
2017	0.0157	0.2251	2.7800	0.0280	0.0056	0.0747	0.1554	NA	0.0466	3.3312
2018	0.0150	0.2383	2.8682	0.0233	0.0051	0.0767	0.1592	NA	0.0433	3.4291
2019	0.0140	0.3158	2.9629	0.0199	0.0049	0.0802	0.1748	NA	0.0452	3.6177
2020	0.0146	0.2915	4.5109	0.0205	0.0051	0.0836	0.2038	NA	0.0466	5.1766
2021	0.0167	0.2850	4.6178	0.0166	0.0054	0.2275	0.2375	NA	0.0478	5.4541
2022	0.0181	0.4503	4.6166	0.0102	0.0056	0.3714	0.2671	NA	0.0453	5.7845

Table 130. Emission trends for CO (kt) 1990-2022

со	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	4.3209	20.1935	286.0574	1.3950	0.8047	203.5089	1.4480	0.0001	0.1482	517.8765
1991	4.3545	15.2630	226.7071	0.7185	0.9001	195.8315	1.3058	0.0001	0.1472	445.2278
1992	4.2585	18.5072	227.8617	1.1597	0.7661	167.9281	0.8995	0.0001	0.1573	421.5382
1993	3.5094	13.5385	227.4613	0.9776	0.8153	106.8649	0.5125	0.0002	0.1499	353.8297
1994	3.1426	12.9732	212.0495	0.9290	0.6363	160.5050	0.4627	0.0001	0.1495	390.8480
1995	3.8551	9.7473	172.5320	0.7917	0.6181	162.9824	0.7046	0.0002	0.1476	351.3789
1996	3.8384	15.3379	193.8862	0.9653	0.5539	164.0968	0.9190	0.0002	0.1479	379.7454
1997	4.2027	16.5107	194.7019	1.0528	0.4687	167.9950	0.9730	0.0002	0.1462	386.0511
1998	4.0576	19.1782	216.0483	1.0168	0.6741	169.7497	0.9953	0.0003	0.1445	411.8649
1999	3.0441	13.8076	209.4368	0.7101	0.5865	147.6170	0.5855	0.0003	0.1432	375.9312
2000	3.3751	16.2750	217.6316	0.7359	0.7308	160.6049	0.6642	0.0003	0.1379	400.1557
2001	3.4870	16.5111	212.8232	0.8899	0.6909	166.6089	0.7636	0.0003	0.1402	401.9152
2002	3.7867	17.9901	222.5956	0.9895	0.7850	155.3222	0.9532	0.0003	0.1382	402.5609
2003	3.9635	19.0915	228.1931	1.0721	0.7921	163.6719	1.0222	0.0004	0.1366	417.9433
2004	4.2983	38.9636	230.4788	1.1038	0.8324	157.3312	1.4625	0.0003	0.1372	434.6081
2005	3.4218	34.4181	212.7193	0.8477	0.9546	149.3755	1.4901	0.0003	0.1375	403.3648
2006	3.4930	41.1634	177.9232	0.8163	1.0065	131.9934	1.5776	0.0003	0.1319	358.1057
2007	3.5770	37.9798	218.8782	0.7844	1.1739	120.0394	20.5042	0.0004	0.1356	403.0727
2008	3.7026	41.0048	199.4026	0.8029	1.1501	112.9900	6.8419	0.0004	0.1412	366.0365
2009	3.4152	25.9791	217.9768	0.6454	1.1286	100.4683	9.8482	0.0004	0.1365	359.5984
2010	3.2954	30.0712	213.9304	0.7412	1.2070	81.2390	17.7397	0.0004	0.1366	348.3609
2011	3.7077	33.5655	213.5119	0.7009	1.5057	68.4027	23.7624	0.0004	0.1397	345.2969
2012	3.5595	21.0384	209.8603	0.6386	1.4966	57.0285	14.6754	0.0004	0.1137	308.4114
2013	3.7751	23.3382	177.8054	0.6990	1.3131	51.9667	25.1698	0.0004	0.1148	284.1826
2014	3.1552	25.6822	177.7596	0.4680	1.1616	47.9613	10.9035	0.0004	0.1220	267.2138
2015	3.7654	32.2573	175.1581	0.5338	1.8391	51.6860	3.9872	0.0004	0.1168	269.3442
2016	3.7301	24.8206	194.3304	0.6327	2.2912	57.7981	3.2270	0.0004	0.1169	286.9474
2017	3.8416	32.1084	181.0333	0.7309	2.5330	54.1357	3.3442	0.0005	0.1152	277.8428
2018	3.6823	39.0731	182.7646	0.6787	2.3348	48.7626	3.3734	0.0005	0.1071	280.7771
2019	3.6915	41.8187	188.3839	0.5889	2.2086	44.2057	3.5401	0.0005	0.1116	284.5495
2020	3.8741	37.4807	277.8742	0.6136	2.3268	42.0836	3.4957	0.0006	0.1152	367.8645
2021	4.0240	39.8324	269.4488	0.5778	2.4327	43.5923	4.7029	0.0006	0.1181	364.7295
2022	4.0552	42.5996	266.5373	0.5295	2.5362	45.1010	5.2710	0.0005	0.1119	366.7421

Table 131. Emission trends for Pb (kt) 1990-2022

Pb	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	5.7495	9.3093	4.4439	0.8251	NA	351.8605	0.0072	0.0000	0.0002	372.1959
1991	5.0774	6.6497	3.2538	0.3522	NA	328.6130	0.0049	0.0000	0.0002	343.9512
1992	4.6690	8.0520	4.4598	0.7945	NA	285.6732	0.0047	0.0000	0.0003	303.6535
1993	4.4378	4.1673	4.4910	0.7321	NA	181.6423	0.0009	0.0000	0.0002	195.4718
1994	4.0800	4.1131	3.9944	0.6756	NA	278.6388	0.0011	0.0000	0.0002	291.5032
1995	5.1957	3.6963	2.4362	0.5708	NA	273.5494	0.0014	0.0000	0.0002	285.4502
1996	5.0117	6.7893	3.3504	0.6334	NA	272.0703	0.0034	0.0000	0.0002	287.8588
1997	5.4057	8.2800	3.3655	0.6482	NA	284.6442	0.0041	0.0000	0.0002	302.3481
1998	5.4170	8.0955	4.2697	0.6299	NA	291.1375	0.0045	0.0001	0.0002	309.5545
1999	4.0306	3.9254	4.0052	0.5301	NA	259.4003	0.0029	0.0001	0.0002	271.8947
2000	4.5651	5.7566	3.9438	0.5386	NA	181.9144	0.0034	0.0001	0.0002	196.7222
2001	4.4603	5.2321	3.7880	0.5565	NA	188.0509	0.0034	0.0001	0.0002	202.0916
2002	4.6719	5.5309	4.1191	0.5905	NA	176.5603	0.0034	0.0001	0.0002	191.4764
2003	4.8913	5.8765	4.3143	0.6249	NA	219.9895	0.0032	0.0001	0.0002	235.7001
2004	4.9998	23.8487	4.3954	0.6402	NA	214.7996	0.0031	0.0001	0.0002	248.6870
2005	4.3695	28.7163	3.7998	0.4844	NA	197.3268	0.0031	0.0001	0.0002	234.7002
2006	4.6420	44.9438	2.3997	0.4572	NA	170.9155	0.0032	0.0001	0.0002	223.3617
2007	4.6179	38.7908	4.1668	0.4228	NA	161.5695	0.0031	0.0001	0.0002	209.5712
2008	4.7919	41.0680	3.5510	0.4444	NA	145.1722	0.0032	0.0001	0.0002	195.0310
2009	4.4094	27.6568	3.2257	0.3335	NA	127.9662	0.0031	0.0001	0.0002	163.5950
2010	4.0088	33.7574	3.5138	0.4143	NA	63.9534	0.0025	0.0001	0.0002	105.6505
2011	4.5139	31.9111	4.1326	0.4156	NA	8.0347	0.0020	0.0001	0.0002	49.0101
2012	4.2088	9.0153	3.0788	0.3791	NA	6.4875	0.0014	0.0001	0.0002	23.1712
2013	4.4590	9.9920	2.5411	0.3872	NA	6.4049	0.0014	0.0001	0.0002	23.7859
2014	3.4838	12.8693	2.1648	0.2056	NA	6.5447	0.0014	0.0001	0.0002	25.2699
2015	4.2672	21.5417	2.1805	0.2377	NA	7.6080	0.0016	0.0001	0.0002	35.8370
2016	4.2256	24.8523	2.6831	0.3077	NA	1.5824	0.0016	0.0001	0.0002	33.6530
2017	4.2758	39.7542	2.4077	0.3729	NA	1.6768	0.0013	0.0001	0.0002	48.4889
2018	4.0024	45.1347	2.2647	0.3142	NA	1.7173	0.0011	0.0001	0.0002	53.4347
2019	4.0209	39.7387	2.3372	0.2691	NA	1.7729	0.0011	0.0001	0.0002	48.1402
2020	4.2383	23.4585	3.2019	0.2770	NA	1.8360	0.0009	0.0001	0.0002	33.0128
2021	3.8864	24.4029	2.5536	0.2291	NA	7.2330	0.0038	0.0001	0.0002	38.3091
2022	3.8674	22.9811	2.5068	0.1513	NA	12.6300	0.0034	0.0001	0.0002	42.1402

Table 132. Emission trends for Cd (kt) 1990-2022

Cd	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.6972	2.4832	0.6736	0.0389	0.0789	0.0155	0.0011	0.0000	0.0020	3.9904
1991	0.6236	2.1770	0.5769	0.0239	0.0882	0.0150	0.0009	0.0000	0.0019	3.5077
1992	0.5721	2.2338	0.4531	0.0265	0.0751	0.0139	0.0009	0.0000	0.0021	3.3774
1993	0.5383	0.9016	0.4536	0.0189	0.0799	0.0096	0.0003	0.0000	0.0020	2.0042
1994	0.4942	1.2047	0.4384	0.0191	0.0624	0.0140	0.0003	0.0000	0.0020	2.2350
1995	0.6282	1.2779	0.4194	0.0165	0.0606	0.0138	0.0003	0.0000	0.0019	2.4188
1996	0.6094	1.7351	0.4307	0.0235	0.0543	0.0138	0.0006	0.0000	0.0020	2.8693
1997	0.6595	1.8978	0.4309	0.0279	0.0459	0.0141	0.0006	0.0000	0.0019	3.0787
1998	0.6560	1.6065	0.4420	0.0268	0.0661	0.0146	0.0007	0.0000	0.0019	2.8146
1999	0.4908	0.8733	0.4388	0.0139	0.0575	0.0130	0.0005	0.0000	0.0019	1.8895
2000	0.5538	0.8267	0.4735	0.0149	0.0716	0.0149	0.0005	0.0000	0.0018	1.9578
2001	0.5414	0.6517	0.4716	0.0232	0.0677	0.0163	0.0005	0.0000	0.0019	1.7743
2002	0.5630	0.7016	0.4756	0.0273	0.0769	0.0165	0.0005	0.0000	0.0018	1.8632
2003	0.5895	0.3941	0.4779	0.0303	0.0776	0.0172	0.0005	0.0000	0.0018	1.5889
2004	0.6015	0.4576	0.4789	0.0314	0.0816	0.0178	0.0005	0.0000	0.0018	1.6711
2005	0.5322	0.7351	0.4718	0.0245	0.0936	0.0185	0.0005	0.0000	0.0018	1.8780
2006	0.5639	0.9878	0.4539	0.0241	0.0987	0.0195	0.0005	0.0000	0.0017	2.1501
2007	0.5612	0.7861	0.4753	0.0241	0.1151	0.0210	0.0005	0.0000	0.0018	1.9850
2008	0.5808	0.8296	0.3991	0.0240	0.1127	0.0218	0.0005	0.0000	0.0019	1.9704
2009	0.5368	0.6481	0.5693	0.0206	0.1106	0.0217	0.0004	0.0000	0.0018	1.9093
2010	0.4865	0.6377	0.5551	0.0219	0.1183	0.0215	0.0004	0.0000	0.0018	1.8432
2011	0.5456	0.7200	0.5196	0.0195	0.1476	0.0217	0.0003	0.0000	0.0018	1.9761
2012	0.5097	0.6380	0.5426	0.0177	0.1467	0.0190	0.0002	0.0000	0.0015	1.8754
2013	0.5378	0.6829	0.4588	0.0209	0.1287	0.0194	0.0002	0.0000	0.0015	1.8503
2014	0.4206	0.6413	0.4814	0.0169	0.1138	0.0202	0.0003	0.0000	0.0016	1.6962
2015	0.5155	0.8782	0.4791	0.0191	0.1802	0.0244	0.0003	0.0000	0.0015	2.0983
2016	0.5103	1.1759	0.4986	0.0212	0.2245	0.0078	0.0003	0.0000	0.0015	2.4402
2017	0.5162	1.3815	0.4578	0.0236	0.2482	0.0083	0.0002	0.0000	0.0015	2.6374
2018	0.4832	1.3989	0.4757	0.0236	0.2288	0.0085	0.0002	0.0000	0.0014	2.6204
2019	0.4850	1.5844	0.4926	0.0207	0.2165	0.0088	0.0002	0.0000	0.0015	2.8096
2020	0.5111	1.2334	0.7603	0.0217	0.2280	0.0092	0.0002	0.0000	0.0015	2.7654
2021	0.4702	1.0349	0.7908	0.0222	0.2384	0.0101	0.0005	0.0000	0.0016	2.5687
2022	0.4681	0.6336	0.7911	0.0235	0.2486	0.0110	0.0005	0.0000	0.0015	2.1778

Table 133. Emission trends for Hg (kt) 1990-2022

Hg	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	1.1077	1.4013	0.1639	0.0494	0.0438	NA	0.0008	0.0011	0.0003	2.7684
1991	0.9727	0.7640	0.1187	0.0283	0.0438	NA	0.0005	0.0013	0.0003	1.9297
1992	0.8962	1.4084	0.1840	0.0368	0.0439	NA	0.0005	0.0013	0.0003	2.5714
1993	0.8553	1.2326	0.1837	0.0285	0.0439	NA	0.0001	0.0017	0.0003	2.3462
1994	0.7868	1.1637	0.1609	0.0279	0.0440	NA	0.0001	0.0015	0.0003	2.1851
1995	1.0025	0.9868	0.0895	0.0240	0.0440	NA	0.0002	0.0017	0.0003	2.1490
1996	0.9643	1.1513	0.1358	0.0317	0.0439	NA	0.0004	0.0016	0.0003	2.3293
1997	1.0384	1.1672	0.1369	0.0363	0.0438	NA	0.0005	0.0018	0.0003	2.4250
1998	1.0444	1.1593	0.1792	0.0349	0.0437	NA	0.0005	0.0033	0.0003	2.4656
1999	0.7749	0.9736	0.1650	0.0208	0.0436	NA	0.0003	0.0035	0.0003	1.9819
2000	0.8792	1.0107	0.1602	0.0219	0.0434	NA	0.0004	0.0035	0.0003	2.1196
2001	0.8592	1.0480	0.1536	0.0303	0.0433	NA	0.0004	0.0032	0.0003	2.1384
2002	0.9039	1.0966	0.1680	0.0348	0.0420	NA	0.0004	0.0034	0.0003	2.2494
2003	0.9463	1.1418	0.1768	0.0383	0.0419	NA	0.0004	0.0037	0.0003	2.3495
2004	0.9689	1.3441	0.1819	0.0396	0.0418	NA	0.0003	0.0035	0.0003	2.5804
2005	0.8405	1.1142	0.1551	0.0307	0.0417	NA	0.0003	0.0035	0.0003	2.1862
2006	0.8945	1.2348	0.0900	0.0299	0.0415	NA	0.0004	0.0037	0.0003	2.2950
2007	0.8898	1.1509	0.1764	0.0294	0.0413	NA	0.0003	0.0039	0.0003	2.2923
2008	0.9249	1.2091	0.1424	0.0296	0.0412	NA	0.0004	0.0039	0.0003	2.3516
2009	0.8498	0.7445	0.1310	0.0248	0.0410	NA	0.0003	0.0041	0.0003	1.7957
2010	0.7729	1.1027	0.1504	0.0272	0.0408	NA	0.0003	0.0043	0.0003	2.0989
2011	0.8720	1.2027	0.1855	0.0248	0.0406	NA	0.0002	0.0041	0.0003	2.3303
2012	0.8125	0.8382	0.1248	0.0226	0.0403	NA	0.0002	0.0042	0.0002	1.8429
2013	0.8623	0.7922	0.1018	0.0258	0.0401	NA	0.0002	0.0046	0.0002	1.8272
2014	0.6738	0.5103	0.0808	0.0194	0.0399	NA	0.0002	0.0045	0.0003	1.3291
2015	0.8251	0.7177	0.0840	0.0220	0.0397	NA	0.0002	0.0040	0.0002	1.6930
2016	0.8170	0.9688	0.1057	0.0250	0.0395	NA	0.0002	0.0046	0.0002	1.9611
2017	0.8271	0.8839	0.0937	0.0282	0.0393	NA	0.0001	0.0050	0.0002	1.8776
2018	0.7743	0.9187	0.0862	0.0275	0.0391	NA	0.0001	0.0051	0.0002	1.8512
2019	0.7784	0.7474	0.0890	0.0240	0.0388	NA	0.0001	0.0051	0.0002	1.6830
2020	0.8206	0.6212	0.1158	0.0251	0.0385	NA	0.0001	0.0059	0.0002	1.6273
2021	0.7522	0.5380	0.0889	0.0249	0.0381	NA	0.0004	0.0065	0.0002	1.4493
2022	0.7478	0.4629	0.0888	0.0252	0.0372	NA	0.0004	0.0053	0.0002	1.3678

Table 134.Emission trends for As (kt) 1990-2022

As	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	5.4803	2.1222	0.0769	0.0515	0.0002	NA	0.0272	0.0000	0.0000	7.7583
1991	4.8360	1.6582	0.0552	0.0292	0.0002	NA	0.0184	0.0000	0.0000	6.5971
1992	4.4485	1.9601	0.0863	0.0388	0.0001	NA	0.0177	0.0000	0.0000	6.5515
1993	4.2300	1.0505	0.0870	0.0304	0.0000	NA	0.0034	0.0000	0.0000	5.4014
1994	3.8891	1.1298	0.0759	0.0296	0.0000	NA	0.0041	0.0000	0.0000	5.1286
1995	4.9529	1.0649	0.0403	0.0254	0.0000	NA	0.0054	0.0000	0.0000	6.0890
1996	4.7757	1.5829	0.0625	0.0333	0.0001	NA	0.0129	0.0000	0.0000	6.4675
1997	5.1500	1.8035	0.0628	0.0379	0.0001	NA	0.0156	0.0000	0.0000	7.0700
1998	5.1633	1.6647	0.0840	0.0365	0.0000	NA	0.0170	0.0000	0.0000	6.9657
1999	3.8403	0.9741	0.0776	0.0222	0.0000	NA	0.0109	0.0000	0.0000	4.9251
2000	4.3506	1.1209	0.0748	0.0233	0.0000	NA	0.0129	0.0000	0.0000	5.5827
2001	4.2512	1.0505	0.0716	0.0317	0.0000	NA	0.0129	0.0000	0.0000	5.4180
2002	4.4557	1.1131	0.0787	0.0363	0.0001	NA	0.0129	0.0000	0.0000	5.6968
2003	4.6650	1.0468	0.0830	0.0399	0.0000	NA	0.0122	0.0000	0.0000	5.8470
2004	4.7698	1.2451	0.0850	0.0412	0.0001	NA	0.0116	0.0000	0.0000	6.1529
2005	4.1630	1.2557	0.0721	0.0319	0.0002	NA	0.0116	0.0000	0.0000	5.5345
2006	4.4226	1.5559	0.0397	0.0311	0.0002	NA	0.0122	0.0000	0.0000	6.0617
2007	4.3996	1.3087	0.0835	0.0305	0.0002	NA	0.0116	0.0000	0.0000	5.8341
2008	4.5659	1.4102	0.0820	0.0308	0.0001	NA	0.0122	0.0000	0.0000	6.1013
2009	4.1984	0.9374	0.0724	0.0256	0.0001	NA	0.0116	0.0000	0.0000	5.2455
2010	3.8199	1.1157	0.0830	0.0282	0.0001	NA	0.0095	0.0000	0.0000	5.0565
2011	4.3029	1.3010	0.1147	0.0258	0.0001	NA	0.0075	0.0000	0.0000	5.7520
2012	4.0120	0.8134	0.0747	0.0235	0.0001	NA	0.0052	0.0000	0.0000	4.9289
2013	4.2509	0.8031	0.0571	0.0268	0.0001	NA	0.0054	0.0000	0.0000	5.1435
2014	3.3211	0.7476	0.0465	0.0199	NA	NA	0.0054	0.0000	0.0000	4.1405
2015	4.0673	1.0408	0.0488	0.0226	NA	NA	0.0061	0.0000	0.0000	5.1857
2016	4.0280	1.3864	0.0594	0.0258	NA	NA	0.0061	0.0000	0.0000	5.5058
2017	4.0763	1.4717	0.0518	0.0292	NA	NA	0.0048	0.0000	0.0000	5.6338
2018	3.8154	1.6645	0.0472	0.0283	NA	NA	0.0041	0.0000	0.0000	5.5595
2019	3.8335	1.6596	0.0474	0.0247	NA	NA	0.0041	0.0000	0.0000	5.5693
2020	4.0408	1.3486	0.0580	0.0258	NA	NA	0.0034	0.0001	0.0000	5.4768
2021	3.7037	1.2959	0.0433	0.0255	NA	NA	0.0143	0.0001	0.0000	5.0827
2022	3.6828	1.0795	0.0493	0.0255	NA	NA	0.0129	0.0000	0.0000	4.8501

Table 135. Emission trends for Cr (kt) 1990-2022

Cr	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	3.4859	6.1020	1.4051	0.3825	0.0025	0.2136	0.0303	0.0000	0.0002	11.6222
1991	3.0756	4.6645	1.1663	0.1674	0.0020	0.2080	0.0214	0.0000	0.0002	9.3054
1992	2.8286	4.9557	1.0493	0.3621	0.0008	0.1956	0.0207	0.0000	0.0002	9.4129
1993	2.6904	1.9742	1.0527	0.3306	0.0001	0.1384	0.0045	0.0000	0.0002	6.1910
1994	2.4737	2.2858	0.9928	0.3060	0.0002	0.1989	0.0050	0.0000	0.0002	6.2625
1995	3.1505	2.3963	0.8505	0.2588	0.0003	0.1958	0.0065	0.0000	0.0002	6.8589
1996	3.0378	4.2269	0.9350	0.2900	0.0007	0.1956	0.0146	0.0000	0.0002	8.7009
1997	3.2759	5.1974	0.9362	0.2990	0.0007	0.2018	0.0174	0.0000	0.0002	9.9286
1998	3.2844	4.7361	1.0195	0.2904	0.0006	0.2065	0.0188	0.0000	0.0002	9.5565
1999	2.4429	2.0155	0.9953	0.2394	0.0002	0.1860	0.0122	0.0000	0.0002	5.8917
2000	2.7675	2.9887	1.0469	0.2438	0.0004	0.2137	0.0142	0.0000	0.0002	7.2755
2001	2.7039	2.5433	1.0332	0.2562	0.0005	0.2385	0.0143	0.0000	0.0002	6.7902
2002	2.8335	2.6307	1.0627	0.2734	0.0007	0.2435	0.0143	0.0000	0.0002	7.0591
2003	2.9666	2.4873	1.0802	0.2902	0.0006	0.2537	0.0136	0.0000	0.0002	7.0923
2004	3.0327	4.8738	1.0875	0.2974	0.0014	0.2643	0.0129	0.0000	0.0002	9.5703
2005	2.6480	5.8485	1.0345	0.2255	0.0019	0.2772	0.0129	0.0000	0.0002	10.0486
2006	2.8134	8.6560	0.9051	0.2133	0.0021	0.2951	0.0136	0.0000	0.0002	12.8988
2007	2.7986	7.2219	1.0700	0.1983	0.0021	0.3192	0.0129	0.0000	0.0002	11.6233
2008	2.9044	7.8313	0.8923	0.2077	0.0018	0.3330	0.0135	0.0000	0.0002	12.1842
2009	2.6710	5.3318	1.1526	0.1573	0.0012	0.3315	0.0127	0.0000	0.0002	9.6584
2010	2.4296	6.2614	1.1530	0.1934	0.0012	0.3232	0.0106	0.0000	0.0002	10.3727
2011	2.7366	6.2803	1.1399	0.1926	0.0010	0.3331	0.0084	0.0000	0.0002	10.6922
2012	2.5514	2.3088	1.0978	0.1757	0.0007	0.2869	0.0059	0.0000	0.0001	6.4274
2013	2.7035	2.5270	0.9237	0.1810	0.0006	0.2975	0.0062	0.0000	0.0001	6.6398
2014	2.1119	3.0174	0.9322	0.0993	NA	0.3107	0.0062	0.0000	0.0001	6.4780
2015	2.5867	4.7755	0.9306	0.1146	NA	0.3891	0.0070	0.0000	0.0001	8.8036
2016	2.5616	6.0810	0.9970	0.1464	NA	0.6143	0.0070	0.0000	0.0001	10.4074
2017	2.5922	8.2330	0.9099	0.1762	NA	0.6514	0.0055	0.0000	0.0001	12.5685
2018	2.4262	9.5799	0.9287	0.1506	NA	0.6674	0.0049	0.0000	0.0001	13.7578
2019	2.4376	9.1490	0.9616	0.1292	NA	0.6902	0.0049	0.0000	0.0001	13.3728
2020	2.5695	6.2714	1.4570	0.1333	NA	0.7148	0.0041	0.0001	0.0001	11.1503
2021	2.3548	6.3864	1.4611	0.1126	NA	2.9667	0.0157	0.0001	0.0001	13.2976
2022	2.3423	5.8375	1.4581	0.0793	NA	5.2186	0.0142	0.0000	0.0001	14.9502

Table 136. Emission trends for Cu (kt) 1990-2021

Cu	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.4700	10.0102	0.8002	0.1253	0.0789	3.9889	0.1010	0.0000	0.0002	15.5746
1991	0.4537	8.4441	0.5909	0.0600	0.0882	3.8875	0.1001	0.0000	0.0002	13.6247
1992	0.4022	9.0494	0.7705	0.1109	0.0751	3.6606	0.0988	0.0000	0.0002	14.1676
1993	0.3401	4.0431	0.7738	0.0973	0.0799	2.5836	0.0352	0.0000	0.0002	7.9532
1994	0.3070	5.1687	0.6939	0.0912	0.0624	3.7176	0.0313	0.0000	0.0002	10.0724
1995	0.3828	5.3264	0.4491	0.0775	0.0606	3.6627	0.0355	0.0000	0.0002	9.9947
1996	0.3954	7.0151	0.5900	0.0906	0.0543	3.6642	0.0544	0.0000	0.0002	11.8640
1997	0.4433	7.5740	0.5929	0.0961	0.0459	3.7938	0.0577	0.0000	0.0002	12.6039
1998	0.4068	6.4820	0.7327	0.0931	0.0661	3.8877	0.0585	0.0000	0.0002	11.7270
1999	0.3230	3.7960	0.6914	0.0706	0.0575	3.5097	0.0421	0.0000	0.0002	8.4904
2000	0.3549	3.5495	0.6873	0.0725	0.0716	4.0301	0.0425	0.0000	0.0002	8.8086
2001	0.3480	2.9038	0.6616	0.0818	0.0677	4.5049	0.0442	0.0000	0.0002	8.6121
2002	0.3330	3.1454	0.7156	0.0892	0.0769	4.6059	0.0459	0.0000	0.0002	9.0121
2003	0.3480	1.9722	0.7472	0.0957	0.0776	4.7986	0.0446	0.0000	0.0001	8.0841
2004	0.3483	4.2114	0.7602	0.0983	0.0816	5.0043	0.0451	0.0000	0.0002	10.5493
2005	0.3569	5.8717	0.6629	0.0751	0.0935	5.2497	0.0434	0.0000	0.0002	12.3534
2006	0.3635	8.8290	0.4441	0.0717	0.0986	5.5987	0.0446	0.0000	0.0001	15.4503
2007	0.3635	7.4617	0.7174	0.0679	0.1150	6.0521	0.0421	0.0000	0.0001	14.8198
2008	0.3636	7.8059	0.6377	0.0702	0.1127	6.3187	0.0415	0.0000	0.0002	15.3505
2009	0.3516	5.6235	0.5826	0.0550	0.1106	6.2822	0.0386	0.0000	0.0001	13.0442
2010	0.3095	6.4250	0.6162	0.0651	0.1183	6.1680	0.0365	0.0000	0.0001	13.7386
2011	0.3324	6.3431	0.7074	0.0630	0.1476	6.3462	0.0311	0.0000	0.0002	13.9710
2012	0.3172	3.4459	0.5623	0.0574	0.1467	5.4703	0.0243	0.0000	0.0001	10.0243
2013	0.3218	3.5839	0.4663	0.0611	0.1287	5.6600	0.0252	0.0000	0.0001	10.2473
2014	0.2557	3.5352	0.4145	0.0376	0.1138	5.9076	0.0255	0.0000	0.0001	10.2901
2015	0.3141	5.3885	0.4135	0.0431	0.1802	7.4060	0.0285	0.0000	0.0001	13.7740
2016	0.3107	7.1897	0.4984	0.0527	0.2245	12.7725	0.0285	0.0000	0.0001	21.0773
2017	0.3125	9.7661	0.4541	0.0620	0.2482	13.5318	0.0260	0.0000	0.0001	24.4009
2018	0.2935	10.0944	0.4343	0.0555	0.2288	13.8573	0.0264	0.0000	0.0001	24.9904
2019	0.2904	9.7508	0.4469	0.0480	0.2165	14.2973	0.0281	0.0000	0.0001	25.0782
2020	0.3053	6.4267	0.6185	0.0498	0.2280	14.8021	0.0235	0.0000	0.0001	22.4542
2021	0.2942	5.7754	0.5189	0.0449	0.2384	15.3070	0.0470	0.0001	0.0001	22.2259
2022	0.2996	3.6989	0.5117	0.0375	0.2486	15.8118	0.0428	0.0000	0.0001	20.6510

Table 137. Emission trends for Ni (kt) 1990-2022

Ni	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	6.4871	8.3378	0.4024	0.2771	0.0606	0.0430	1.2821	0.0000	0.0001	16.8902
1991	8.8085	9.5824	0.2904	0.1234	0.0609	0.0416	0.8667	0.0000	0.0001	19.7740
1992	7.5965	8.6450	0.4150	0.2591	0.0443	0.0389	0.8347	0.0000	0.0001	17.8337
1993	5.0979	4.1114	0.4180	0.2350	0.0408	0.0272	0.1612	0.0000	0.0001	10.0917
1994	4.4027	3.9280	0.3700	0.2180	0.0326	0.0394	0.1930	0.0000	0.0001	9.1839
1995	5.1948	4.0195	0.2182	0.1845	0.0327	0.0388	0.2571	0.0000	0.0001	9.9456
1996	6.3260	6.1749	0.3072	0.2083	0.0333	0.0388	0.6093	0.0000	0.0001	13.6979
1997	7.6697	7.6651	0.3087	0.2159	0.0289	0.0402	0.7372	0.0000	0.0001	16.6658
1998	5.8017	5.1415	0.3968	0.2095	0.0380	0.0411	0.8011	0.0000	0.0001	12.4298
1999	5.3387	4.6509	0.3710	0.1702	0.0308	0.0370	0.5129	0.0000	0.0001	11.1117
2000	5.2711	2.2602	0.3633	0.1736	0.0395	0.0424	0.6088	0.0000	0.0001	8.7589
2001	5.2537	4.6995	0.3481	0.1847	0.0382	0.0471	0.6088	0.0000	0.0001	11.1803
2002	3.9286	4.8803	0.3804	0.1979	0.0447	0.0480	0.6089	0.0000	0.0001	10.0889
2003	4.1310	5.0070	0.3994	0.2105	0.0434	0.0501	0.5769	0.0000	0.0001	10.4185
2004	3.8079	11.3810	0.4073	0.2158	0.0524	0.0520	0.5450	0.0000	0.0001	16.4617
2005	5.7592	15.9543	0.3492	0.1638	0.0622	0.0544	0.5449	0.0000	0.0001	22.8883
2006	5.3905	24.6447	0.2128	0.1553	0.0666	0.0576	0.5769	0.0000	0.0001	31.1046
2007	5.4656	20.7982	0.3852	0.1448	0.0751	0.0620	0.5449	0.0000	0.0001	27.4759
2008	5.0188	18.5265	0.3297	0.1513	0.0710	0.0646	0.5768	0.0000	0.0001	24.7388
2009	5.2995	14.1733	0.2888	0.1154	0.0655	0.0644	0.5447	0.0000	0.0001	20.5517
2010	4.5955	15.7216	0.3176	0.1408	0.0690	0.0629	0.4488	0.0001	0.0001	21.3565
2011	4.3929	13.9230	0.3808	0.1395	0.0824	0.0643	0.3527	0.0000	0.0001	19.3358
2012	4.4760	5.3108	0.2761	0.1272	0.0795	0.0558	0.2438	0.0000	0.0001	10.5693
2013	3.9527	4.9419	0.2271	0.1319	0.0697	0.0576	0.2566	0.0001	0.0001	9.6377
2014	3.2494	6.2515	0.1892	0.0740	0.0569	0.0600	0.2566	0.0001	0.0001	10.1378
2015	4.0227	9.6164	0.1908	0.0853	0.0901	0.0745	0.2887	0.0000	0.0001	14.3687
2016	3.9856	12.3001	0.2392	0.1080	0.1123	0.0961	0.2887	0.0001	0.0001	17.1301
2017	3.9527	19.3743	0.2143	0.1294	0.1241	0.1018	0.2247	0.0001	0.0001	24.1214
2018	3.7001	20.9920	0.1993	0.1116	0.1144	0.1043	0.1928	0.0001	0.0001	25.4146
2019	3.5132	18.1530	0.2055	0.0959	0.1082	0.1079	0.1928	0.0001	0.0001	22.3767
2020	3.6701	9.0517	0.2769	0.0991	0.1140	0.1118	0.1607	0.0001	0.0001	13.4844
2021	3.8919	9.2161	0.2118	0.0848	0.1192	0.7985	0.6729	0.0001	0.0001	14.9954
2022	3.9704	8.9518	0.2076	0.0622	0.1243	1.4852	0.6088	0.0001	0.0001	15.4103

Table 138. Emission trends for Se (kt) 1990-2022

Se	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	17.1257	0.4881	0.0526	0.0578	0.0002	0.0038	0.0087	0.0000	0.0000	17.7370
1991	14.9785	0.5553	0.0410	0.0319	0.0002	0.0037	0.0061	0.0000	0.0000	15.6166
1992	13.7962	0.8073	0.0489	0.0450	0.0001	0.0034	0.0059	0.0000	0.0000	14.7068
1993	13.2109	0.6676	0.0494	0.0362	0.0000	0.0024	0.0012	0.0000	0.0000	13.9678
1994	12.1586	0.5902	0.0445	0.0349	0.0000	0.0035	0.0014	0.0000	0.0000	12.8332
1995	15.5028	0.3838	0.0293	0.0299	0.0000	0.0035	0.0018	0.0000	0.0000	15.9513
1996	14.8931	0.5982	0.0387	0.0382	0.0001	0.0034	0.0042	0.0000	0.0000	15.5759
1997	16.0250	0.6108	0.0387	0.0429	0.0001	0.0036	0.0050	0.0000	0.0000	16.7261
1998	16.1453	0.7275	0.0478	0.0413	0.0000	0.0037	0.0054	0.0000	0.0000	16.9712
1999	11.9660	0.6197	0.0452	0.0263	0.0000	0.0034	0.0035	0.0000	0.0000	12.6643
2000	13.5891	0.6679	0.0452	0.0276	0.0000	0.0039	0.0041	0.0000	0.0000	14.3379
2001	13.2725	0.7173	0.0438	0.0360	0.0000	0.0043	0.0041	0.0000	0.0000	14.0782
2002	13.9745	0.7958	0.0468	0.0409	0.0001	0.0043	0.0041	0.0000	0.0000	14.8665
2003	14.6299	0.8429	0.0485	0.0447	0.0000	0.0045	0.0039	0.0000	0.0000	15.5747
2004	14.9736	0.8734	0.0493	0.0461	0.0001	0.0047	0.0037	0.0000	0.0000	15.9510
2005	12.9727	0.5753	0.0440	0.0356	0.0002	0.0049	0.0037	0.0000	0.0000	13.6365
2006	13.8129	0.5772	0.0303	0.0345	0.0002	0.0052	0.0039	0.0000	0.0000	14.4643
2007	13.7356	0.5503	0.0494	0.0337	0.0002	0.0057	0.0037	0.0001	0.0000	14.3787
2008	14.2816	0.6289	0.0468	0.0341	0.0001	0.0060	0.0039	0.0001	0.0000	15.0016
2009	13.1037	0.3778	0.0490	0.0281	0.0001	0.0059	0.0037	0.0001	0.0000	13.5684
2010	11.9274	0.5238	0.0532	0.0314	0.0001	0.0058	0.0031	0.0001	0.0000	12.5448
2011	13.4674	0.7348	0.0665	0.0290	0.0001	0.0059	0.0024	0.0001	0.0000	14.3063
2012	12.5407	0.5124	0.0495	0.0264	0.0001	0.0052	0.0017	0.0001	0.0000	13.1360
2013	13.3178	0.4349	0.0390	0.0297	0.0001	0.0055	0.0018	0.0001	0.0000	13.8287
2014	10.3948	0.3938	0.0353	0.0214	NA	0.0056	0.0018	0.0001	0.0000	10.8528
2015	12.7304	0.4503	0.0364	0.0243	NA	0.0060	0.0020	0.0001	0.0000	13.2494
2016	12.6070	0.6425	0.0412	0.0281	NA	0.0138	0.0020	0.0001	0.0000	13.3347
2017	12.7614	0.5067	0.0365	0.0320	NA	0.0146	0.0016	0.0001	0.0000	13.3528
2018	11.9425	0.5559	0.0351	0.0306	NA	0.0150	0.0014	0.0001	0.0000	12.5806
2019	12.0084	0.4467	0.0357	0.0267	NA	0.0156	0.0014	0.0001	0.0000	12.5346
2020	12.6596	0.4680	0.0486	0.0279	NA	0.0163	0.0012	0.0001	0.0000	13.2215
2021	11.5733	0.3873	0.0437	0.0272	NA	0.1035	0.0045	0.0001	0.0000	12.1397
2022	11.4972	0.3863	0.0468	0.0266	NA	0.1908	0.0041	0.0001	0.0000	12.1519

Table 139. Emission trends for Zn (kt) 1990-2022

Zn	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	4.3718	10.5630	30.2015	0.4879	0.0394	4.1025	0.0780	0.0001	0.0012	49.8455
1991	4.8558	7.8688	25.1628	0.2114	0.0441	3.9488	0.0714	0.0001	0.0012	42.1644
1992	4.2850	9.3376	22.0607	0.4650	0.0375	3.6769	0.0702	0.0001	0.0013	39.9345
1993	3.3561	5.5975	22.1036	0.4262	0.0400	2.5594	0.0230	0.0002	0.0013	34.1071
1994	2.9895	5.0472	20.9591	0.3940	0.0312	3.7202	0.0212	0.0002	0.0013	33.1637
1995	3.6679	4.2420	18.4316	0.3331	0.0303	3.6648	0.0246	0.0002	0.0012	30.3957
1996	3.9822	7.8312	19.9008	0.3718	0.0271	3.6585	0.0408	0.0002	0.0012	35.8138
1997	4.5811	9.6499	19.9282	0.3822	0.0230	3.7711	0.0446	0.0002	0.0012	38.3813
1998	3.9543	9.1448	21.3837	0.3712	0.0330	3.8649	0.0460	0.0004	0.0012	38.7996
1999	3.2874	5.5645	20.9558	0.3086	0.0287	3.4778	0.0322	0.0004	0.0012	33.6567
2000	3.4704	6.9203	22.1705	0.3140	0.0358	3.9742	0.0338	0.0004	0.0012	36.9205
2001	3.4241	7.6441	21.9117	0.3277	0.0339	4.3803	0.0348	0.0003	0.0012	37.7581
2002	3.0545	7.9662	22.4585	0.3489	0.0385	4.4518	0.0358	0.0004	0.0012	38.3556
2003	3.2020	8.8800	22.7795	0.3699	0.0388	4.6383	0.0346	0.0004	0.0011	39.9446
2004	3.1345	20.9362	22.9122	0.3790	0.0408	4.8067	0.0344	0.0004	0.0012	52.2453
2005	3.5675	23.8259	21.9279	0.2871	0.0468	5.0128	0.0334	0.0004	0.0012	54.7029
2006	3.5396	36.9326	19.6376	0.2714	0.0493	5.2856	0.0346	0.0004	0.0011	65.7521
2007	3.5575	32.0916	22.4689	0.2517	0.0575	5.7044	0.0326	0.0004	0.0011	64.1658
2008	3.4699	33.3380	19.1100	0.2640	0.0564	5.9136	0.0328	0.0004	0.0012	62.1863
2009	3.4317	23.4362	24.8354	0.1993	0.0553	5.9085	0.0306	0.0004	0.0011	57.8986
2010	3.0425	28.7576	24.5881	0.2460	0.0591	5.8349	0.0279	0.0005	0.0011	62.5578
2011	3.1611	27.2628	24.0019	0.2457	0.0738	5.9300	0.0234	0.0004	0.0012	60.7004
2012	3.0740	9.5057	23.7164	0.2241	0.0733	5.1856	0.0178	0.0005	0.0010	41.7984
2013	3.0035	11.2545	19.9845	0.2301	0.0643	5.3502	0.0186	0.0005	0.0010	39.9071
2014	2.4087	12.0179	20.4052	0.1246	0.0569	5.5561	0.0187	0.0005	0.0010	40.5897
2015	2.9622	18.6456	20.3171	0.1439	0.0901	6.6660	0.0209	0.0004	0.0010	48.8474
2016	2.9339	22.8724	21.6521	0.1848	0.1123	5.3325	0.0209	0.0005	0.0010	53.1104
2017	2.9393	34.1219	19.8504	0.2231	0.1241	5.6645	0.0185	0.0005	0.0010	62.9433
2018	2.7586	38.1255	20.3463	0.1896	0.1144	5.8109	0.0183	0.0005	0.0009	67.3651
2019	2.6977	34.0200	21.0473	0.1626	0.1082	6.0512	0.0193	0.0006	0.0009	64.1079
2020	2.8313	20.7715	31.9511	0.1675	0.1140	6.2904	0.0162	0.0006	0.0010	62.1435
2021	2.8003	21.3020	32.3018	0.1403	0.1192	6.5296	0.0374	0.0007	0.0010	63.2323
2022	2.8594	23.2168	32.2595	0.0964	0.1243	6.7688	0.0340	0.0006	0.0009	65.3607

Table 140. Emission trends for PCDD/PCDF (kt) 1990-2022

PCDD/PCDF	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	3.8599	3.5140	55.0742	6.3509	0.0015	0.5326	0.0188	0.0000	1.1106	70.4626
1991	3.3915	2.4071	44.0430	2.6599	0.0016	0.4975	0.0127	0.0000	1.1032	54.1166
1992	3.1198	4.0497	43.1696	6.1905	0.0014	0.4631	0.0122	0.0000	1.1791	58.1853
1993	2.9643	3.0453	43.1262	5.7422	0.0015	0.3160	0.0024	0.0000	1.1236	56.3216
1994	2.7250	2.7003	40.3269	5.2876	0.0012	0.4652	0.0028	0.0000	1.1208	52.6297
1995	3.4695	1.7831	33.2833	4.4649	0.0011	0.4595	0.0038	0.0000	1.1063	44.5715
1996	3.3445	3.0215	37.1050	4.9185	0.0010	0.4662	0.0089	0.0000	1.1084	49.9740
1997	3.6059	3.3357	37.2410	5.0072	0.0009	0.4908	0.0108	0.0000	1.0957	50.7880
1998	3.6167	3.6290	41.0703	4.8683	0.0012	0.5109	0.0118	0.0001	1.0832	54.7914
1999	2.6885	2.6224	39.8984	4.1567	0.0011	0.4679	0.0075	0.0001	1.0732	50.9158
2000	3.0494	2.9979	41.5948	4.2177	0.0013	0.5360	0.0089	0.0001	1.0336	53.4396
2001	2.9810	2.9403	40.7509	4.3047	0.0013	0.5970	0.0089	0.0001	1.0512	52.6352
2002	3.1283	3.2672	42.4713	4.5487	0.0014	0.6045	0.0089	0.0001	1.0362	55.0666
2003	3.2745	3.6943	43.4579	4.8034	0.0014	0.6301	0.0085	0.0001	1.0241	56.8944
2004	3.3519	11.6395	43.8557	4.9183	0.0015	0.6625	0.0080	0.0001	1.0286	65.4661
2005	2.9201	11.0262	40.7360	3.7167	0.0017	0.6886	0.0080	0.0001	1.0309	60.1284
2006	3.0999	13.5562	34.5172	3.5009	0.0018	0.7279	0.0085	0.0001	0.9885	56.4009
2007	3.0851	12.1961	41.8082	3.2255	0.0021	0.7948	0.0080	0.0001	1.0162	62.1361
2008	3.2020	13.2164	37.6560	3.3990	0.0021	0.8348	0.0085	0.0001	1.0583	59.3771
2009	2.9449	7.7651	42.4425	2.5334	0.0020	0.8396	0.0080	0.0001	1.0229	57.5586
2010	2.6816	9.3194	41.6891	3.1723	0.0022	0.8436	0.0066	0.0001	1.0240	58.7388
2011	3.0219	11.0427	41.3345	3.1994	0.0027	0.8573	0.0052	0.0001	1.0475	60.5113
2012	2.8176	5.5607	40.7508	2.9192	0.0027	0.7744	0.0036	0.0001	0.8520	53.6811
2013	2.9902	6.3833	34.5104	2.9617	0.0024	0.8103	0.0038	0.0001	0.8604	48.5225
2014	2.3399	7.5449	34.6523	1.5329	0.0021	0.8406	0.0038	0.0001	0.9147	47.8312
2015	2.8638	10.0724	34.2030	1.7747	0.0033	1.0167	0.0042	0.0001	0.8757	50.8140
2016	2.8362	6.6224	37.6635	2.3217	0.0042	2.5739	0.0042	0.0001	0.8765	52.9027
2017	2.8705	9.5784	34.9865	2.8289	0.0046	2.5808	0.0033	0.0001	0.8636	53.7167
2018	2.6894	12.4593	35.4289	2.3578	0.0042	2.5905	0.0028	0.0001	0.8025	56.3357
2019	2.7012	13.2121	36.5476	2.0162	0.0040	2.5991	0.0028	0.0001	0.8368	57.9199
2020	2.8469	11.5674	54.2600	2.0718	0.0042	2.6043	0.0024	0.0001	0.8637	74.2208
2021	2.6199	12.7640	53.0293	1.6845	0.0044	2.6041	0.0099	0.0001	0.8850	73.6011
2022	2.6155	12.3274	52.5242	1.0513	0.0046	2.6038	0.0089	0.0001	0.8388	71.9748

Table 141. Emission trends for benzo a pyren (kt) 1990-2022

benzo a pyren	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0005	0.3722	10.4307	0.3373	0.0016	0.0092	0.0009	0.0000	0.1504	11.3028
1991	0.0004	0.2340	7.9795	0.1408	0.0018	0.0084	0.0012	0.0000	0.1494	8.5155
1992	0.0004	0.4430	8.8833	0.3294	0.0015	0.0077	0.0012	0.0000	0.1596	9.8262
1993	0.0004	0.4339	8.8677	0.3059	0.0016	0.0052	0.0005	0.0000	0.1521	9.7674
1994	0.0004	0.3759	8.1563	0.2816	0.0013	0.0078	0.0004	0.0000	0.1518	8.9755
1995	0.0005	0.1919	6.1835	0.2378	0.0012	0.0077	0.0005	0.0000	0.1498	6.7728
1996	0.0004	0.3125	7.2431	0.2616	0.0011	0.0079	0.0005	0.0000	0.1501	7.9773
1997	0.0005	0.3169	7.2826	0.2661	0.0009	0.0083	0.0005	0.0000	0.1484	8.0242
1998	0.0005	0.4259	8.3480	0.2587	0.0036	0.0086	0.0005	0.0000	0.1467	9.1924
1999	0.0004	0.3885	8.0218	0.2214	0.0024	0.0079	0.0004	0.0000	0.1453	8.7881
2000	0.0004	0.3772	8.2103	0.2246	0.0026	0.0092	0.0003	0.0000	0.1399	8.9646
2001	0.0004	0.3736	7.9701	0.2288	0.0023	0.0107	0.0004	0.0000	0.1423	8.7286
2002	0.0004	0.4389	8.4581	0.2416	0.0021	0.0109	0.0004	0.0000	0.1403	9.2928
2003	0.0004	0.5091	8.7372	0.2550	0.0022	0.0117	0.0004	0.0000	0.1387	9.6547
2004	0.0005	0.5217	8.8484	0.2611	0.0027	0.0125	0.0004	0.0000	0.1393	9.7866
2005	0.0004	0.1228	7.9635	0.1973	0.0025	0.0132	0.0004	0.0000	0.1396	8.4398
2006	0.0004	0.1236	6.2319	0.1858	0.0025	0.0147	0.0004	0.0000	0.1338	6.6931
2007	0.0004	0.2008	8.2417	0.1710	0.0027	0.0166	0.0004	0.0000	0.1376	8.7712
2008	0.0004	0.2497	7.7297	0.1803	0.0030	0.0177	0.0003	0.0000	0.1433	8.3245
2009	0.0005	0.1477	7.5785	0.1342	0.0025	0.0183	0.0003	0.0000	0.1385	8.0206
2010	0.0005	0.1994	7.4829	0.1683	0.0029	0.0175	0.0003	0.0000	0.1386	8.0104
2011	0.0005	0.1678	7.7346	0.1699	0.0037	0.0189	0.0003	0.0000	0.1418	8.2376
2012	0.0005	0.3122	7.3258	0.1550	0.0035	0.0178	0.0003	0.0000	0.1154	7.9304
2013	0.0006	0.2844	6.2041	0.1571	0.0033	0.0196	0.0003	0.0000	0.1165	6.7859
2014	0.0005	0.2472	6.0395	0.0810	0.0031	0.0212	0.0003	0.0000	0.1238	6.5166
2015	0.0006	0.2614	5.9200	0.0938	0.0043	0.0264	0.0003	0.0000	0.1186	6.4254
2016	0.0006	0.2833	6.7895	0.1229	0.0046	0.0646	0.0003	0.0000	0.1187	7.3844
2017	0.0006	0.2198	6.3564	0.1499	0.0051	0.0708	0.0003	0.0000	0.1169	6.9198
2018	0.0006	0.1534	6.3203	0.1247	0.0047	0.0748	0.0003	0.0000	0.1087	6.7874
2019	0.0006	0.1751	6.5006	0.1066	0.0044	0.0815	0.0004	0.0000	0.1133	6.9825
2020	0.0006	0.2048	9.3711	0.1095	0.0047	0.0861	0.0003	0.0000	0.1169	9.8941
2021	0.0007	0.1043	8.7038	0.0887	0.0049	0.0932	0.0004	0.0000	0.1198	9.1159
2022	0.0010	0.1569	8.5543	0.0548	0.0051	0.1003	0.0003	0.0000	0.1136	8.9864

Table 142. Emission trends for benzo b fluoranthen (kt) 1990-2022

benzo b fluoranthen	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0142	0.5057	11.8677	0.4216	0.0007	0.0243	0.0015	0.0000	0.4200	13.2557
1991	0.0124	0.3347	8.7637	0.1760	0.0007	0.0235	0.0020	0.0000	0.4172	9.7302
1992	0.0114	0.6032	10.7285	0.4118	0.0006	0.0220	0.0020	0.0000	0.4459	12.2254
1993	0.0109	0.5751	10.7037	0.3824	0.0007	0.0156	0.0009	0.0000	0.4250	12.1142
1994	0.0100	0.4970	9.7353	0.3520	0.0005	0.0224	0.0007	0.0000	0.4239	11.0418
1995	0.0128	0.2641	6.9309	0.2972	0.0005	0.0219	0.0008	0.0000	0.4184	7.9466
1996	0.0123	0.4356	8.4326	0.3270	0.0005	0.0217	0.0009	0.0000	0.4192	9.6498
1997	0.0132	0.4454	8.4897	0.3326	0.0004	0.0225	0.0009	0.0000	0.4144	9.7192
1998	0.0133	0.5838	10.0005	0.3234	0.0017	0.0227	0.0008	0.0000	0.4097	11.3559
1999	0.0099	0.5253	9.5372	0.2768	0.0011	0.0204	0.0007	0.0000	0.4059	10.7773
2000	0.0112	0.5124	9.6355	0.2808	0.0012	0.0233	0.0006	0.0000	0.3909	10.8558
2001	0.0110	0.5079	9.2919	0.2860	0.0010	0.0262	0.0006	0.0000	0.3975	10.5222
2002	0.0115	0.5922	9.9889	0.3020	0.0009	0.0265	0.0007	0.0000	0.3919	11.3146
2003	0.0121	0.6839	10.3871	0.3188	0.0009	0.0274	0.0007	0.0000	0.3873	11.8181
2004	0.0124	0.7092	10.5456	0.3264	0.0012	0.0285	0.0007	0.0000	0.3890	12.0130
2005	0.0107	0.1881	9.2817	0.2466	0.0011	0.0299	0.0007	0.0000	0.3899	10.1487
2006	0.0114	0.1906	6.8255	0.2322	0.0011	0.0318	0.0007	0.0000	0.3738	7.6671
2007	0.0113	0.2970	9.6748	0.2138	0.0012	0.0346	0.0006	0.0000	0.3843	10.6176
2008	0.0118	0.4310	9.3203	0.2254	0.0013	0.0363	0.0006	0.0000	0.4003	10.4269
2009	0.0108	0.2636	8.2282	0.1678	0.0011	0.0364	0.0005	0.0000	0.3869	9.0953
2010	0.0098	0.3478	8.1643	0.2104	0.0012	0.0334	0.0006	0.0000	0.3873	9.1548
2011	0.0111	0.3358	8.7353	0.2124	0.0015	0.0356	0.0005	0.0000	0.3962	9.7285
2012	0.0104	0.5607	8.0040	0.1938	0.0015	0.0307	0.0004	0.0000	0.3222	9.1237
2013	0.0110	0.4435	6.7775	0.1964	0.0014	0.0329	0.0004	0.0000	0.3254	7.7886
2014	0.0086	0.3985	6.4208	0.1012	0.0013	0.0351	0.0005	0.0000	0.3459	7.3119
2015	0.0105	0.4122	6.2559	0.1172	0.0018	0.0446	0.0005	0.0000	0.3312	7.1740
2016	0.0104	0.4277	7.4320	0.1536	0.0019	0.0979	0.0005	0.0000	0.3315	8.4555
2017	0.0105	0.3420	7.0021	0.1873	0.0021	0.1057	0.0005	0.0000	0.3266	7.9769
2018	0.0099	0.2551	6.8555	0.1558	0.0019	0.1100	0.0006	0.0000	0.3035	7.6923
2019	0.0099	0.2860	7.0337	0.1332	0.0018	0.1177	0.0006	0.0000	0.3165	7.8993
2020	0.0105	0.3105	9.8764	0.1369	0.0019	0.1232	0.0005	0.0000	0.3266	10.7864
2021	0.0096	0.1870	8.7385	0.1109	0.0020	0.1347	0.0006	0.0000	0.3347	9.5180
2022	0.0095	0.2914	8.5229	0.0685	0.0021	0.1461	0.0006	0.0000	0.3172	9.3584

Table 143. Emission trends for benzo k fluoranthen (kt) 1990-2022

benzo k fluoranten	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0112	0.2022	4.5932	0.2108	0.0007	0.0202	NA	0.0000	0.1970	5.2353
1991	0.0098	0.1330	3.3814	0.0880	0.0007	0.0197	NA	0.0000	0.1957	3.8283
1992	0.0090	0.2409	4.1753	0.2059	0.0006	0.0187	NA	0.0000	0.2092	4.8596
1993	0.0086	0.2307	4.1658	0.1912	0.0007	0.0138	NA	0.0000	0.1993	4.8100
1994	0.0079	0.1993	3.7850	0.1760	0.0005	0.0192	NA	0.0000	0.1988	4.3867
1995	0.0100	0.1054	2.6782	0.1486	0.0005	0.0188	NA	0.0000	0.1963	3.1578
1996	0.0097	0.1740	3.2712	0.1635	0.0005	0.0187	NA	0.0000	0.1966	3.8341
1997	0.0104	0.1778	3.2937	0.1663	0.0004	0.0190	NA	0.0000	0.1944	3.8619
1998	0.0105	0.2336	3.8902	0.1617	0.0017	0.0191	NA	0.0000	0.1922	4.5089
1999	0.0078	0.2105	3.7073	0.1384	0.0011	0.0171	NA	0.0000	0.1904	4.2725
2000	0.0088	0.2052	3.7409	0.1404	0.0012	0.0199	NA	0.0000	0.1834	4.2998
2001	0.0086	0.2034	3.6055	0.1430	0.0010	0.0226	NA	0.0000	0.1865	4.1706
2002	0.0090	0.2373	3.8803	0.1510	0.0009	0.0230	NA	0.0000	0.1838	4.4854
2003	0.0095	0.2742	4.0374	0.1594	0.0009	0.0239	NA	0.0000	0.1817	4.6870
2004	0.0097	0.2841	4.0999	0.1632	0.0012	0.0249	NA	0.0000	0.1825	4.7655
2005	0.0084	0.0745	3.6015	0.1233	0.0011	0.0264	NA	0.0000	0.1829	4.0182
2006	0.0090	0.0755	2.6321	0.1161	0.0011	0.0285	NA	0.0000	0.1754	3.0376
2007	0.0089	0.1181	3.7582	0.1069	0.0012	0.0310	NA	0.0000	0.1803	4.2045
2008	0.0092	0.1483	3.6249	0.1127	0.0013	0.0327	NA	0.0000	0.1877	4.1170
2009	0.0085	0.0865	3.1725	0.0839	0.0011	0.0330	NA	0.0000	0.1815	3.5670
2010	0.0077	0.1115	3.1512	0.1052	0.0012	0.0306	NA	0.0000	0.1817	3.5891
2011	0.0087	0.1002	3.3838	0.1062	0.0015	0.0328	NA	0.0000	0.1858	3.8192
2012	0.0081	0.1783	3.0875	0.0969	0.0015	0.0278	NA	0.0000	0.1511	3.5513
2013	0.0086	0.1558	2.6139	0.0982	0.0014	0.0297	NA	0.0000	0.1526	3.0603
2014	0.0067	0.1369	2.4687	0.0506	0.0013	0.0317	NA	0.0000	0.1623	2.8582
2015	0.0082	0.1430	2.4045	0.0586	0.0018	0.0405	NA	0.0000	0.1553	2.8120
2016	0.0082	0.1528	2.8663	0.0768	0.0019	0.0864	NA	0.0000	0.1555	3.3477
2017	0.0083	0.1209	2.7012	0.0937	0.0021	0.0928	NA	0.0000	0.1532	3.1721
2018	0.0077	0.0854	2.6405	0.0779	0.0019	0.0962	NA	0.0000	0.1424	3.0520
2019	0.0078	0.0957	2.7086	0.0666	0.0018	0.1024	NA	0.0000	0.1484	3.1313
2020	0.0082	0.1096	3.7937	0.0684	0.0019	0.1069	NA	0.0000	0.1532	4.2420
2021	0.0075	0.0591	3.3396	0.0555	0.0020	0.1172	NA	0.0000	0.1570	3.7378
2022	0.0075	0.0927	3.2548	0.0343	0.0021	0.1275	NA	0.0000	0.1488	3.6677

Table 144. Emission trends for Indeno 1,2,3 pyren (kt) 1990-2022

Indeno 1,2,3 pyren	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0009	0.1620	5.6140	0.1476	0.0007	0.0152	NA	0.0000	0.1286	6.0689
1991	0.0009	0.1077	4.3582	0.0616	0.0007	0.0141	NA	0.0000	0.1278	4.6710
1992	0.0008	0.1924	4.6400	0.1441	0.0006	0.0129	NA	0.0000	0.1365	5.1274
1993	0.0007	0.1827	4.6313	0.1338	0.0007	0.0087	NA	0.0000	0.1301	5.0881
1994	0.0006	0.1578	4.2854	0.1232	0.0005	0.0128	NA	0.0000	0.1298	4.7102
1995	0.0008	0.0850	3.3553	0.1040	0.0005	0.0127	NA	0.0000	0.1281	3.6865
1996	0.0008	0.1403	3.8525	0.1145	0.0005	0.0128	NA	0.0000	0.1283	4.2497
1997	0.0009	0.1438	3.8716	0.1164	0.0004	0.0134	NA	0.0000	0.1269	4.2734
1998	0.0008	0.1869	4.3721	0.1132	0.0017	0.0138	NA	0.0000	0.1254	4.8139
1999	0.0006	0.1675	4.2185	0.0969	0.0011	0.0126	NA	0.0000	0.1243	4.6216
2000	0.0007	0.1635	4.3470	0.0983	0.0012	0.0141	NA	0.0000	0.1197	4.7445
2001	0.0007	0.1622	4.2327	0.1001	0.0010	0.0159	NA	0.0000	0.1217	4.6344
2002	0.0007	0.1887	4.4644	0.1057	0.0009	0.0159	NA	0.0000	0.1200	4.8963
2003	0.0007	0.2176	4.5967	0.1116	0.0009	0.0164	NA	0.0000	0.1186	5.0627
2004	0.0007	0.2264	4.6494	0.1142	0.0012	0.0172	NA	0.0000	0.1191	5.1283
2005	0.0007	0.0622	4.2291	0.0863	0.0011	0.0177	NA	0.0000	0.1194	4.5165
2006	0.0007	0.0631	3.4129	0.0813	0.0011	0.0190	NA	0.0000	0.1145	3.6925
2007	0.0007	0.0970	4.3559	0.0748	0.0012	0.0206	NA	0.0000	0.1177	4.6679
2008	0.0007	0.1218	4.0541	0.0789	0.0013	0.0214	NA	0.0000	0.1226	4.4009
2009	0.0007	0.0709	4.1514	0.0587	0.0011	0.0217	NA	0.0000	0.1185	4.4229
2010	0.0006	0.0901	4.0784	0.0736	0.0012	0.0197	NA	0.0000	0.1186	4.3822
2011	0.0007	0.0836	4.1415	0.0743	0.0015	0.0207	NA	0.0000	0.1213	4.4436
2012	0.0007	0.1446	4.0060	0.0678	0.0015	0.0191	NA	0.0000	0.0987	4.3383
2013	0.0007	0.1258	3.3954	0.0687	0.0014	0.0206	NA	0.0000	0.0996	3.7122
2014	0.0005	0.1102	3.3501	0.0354	0.0013	0.0220	NA	0.0000	0.1059	3.6255
2015	0.0007	0.1148	3.2884	0.0410	0.0018	0.0273	NA	0.0000	0.1014	3.5754
2016	0.0007	0.1222	3.7169	0.0538	0.0019	0.0654	NA	0.0000	0.1015	4.0622
2017	0.0007	0.0979	3.4759	0.0656	0.0021	0.0712	NA	0.0000	0.1000	3.8133
2018	0.0006	0.0697	3.4809	0.0545	0.0019	0.0748	NA	0.0000	0.0929	3.7754
2019	0.0006	0.0774	3.5831	0.0466	0.0018	0.0811	NA	0.0000	0.0969	3.8876
2020	0.0007	0.0878	5.2199	0.0479	0.0019	0.0855	NA	0.0000	0.1000	5.5436
2021	0.0006	0.0487	4.9448	0.0388	0.0020	0.0927	NA	0.0000	0.1025	5.2302
2022	0.0006	0.0778	4.8722	0.0240	0.0021	0.0999	NA	0.0000	0.0971	5.1737

Table 145. Emission trends for Total 1-4 PAH (kt) 1990-2022

Total 1- 4 PAH	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0268	7.0350	32.5056	1.1172	0.0036	0.0690	0.0024	0.0000	0.8961	41.6557
1991	0.0235	3.9806	24.4827	0.4664	0.0040	0.0658	0.0031	0.0000	0.8901	29.9163
1992	0.0216	2.7637	28.4271	1.0913	0.0034	0.0614	0.0031	0.0000	0.9513	33.3229
1993	0.0206	1.5793	28.3684	1.0134	0.0036	0.0434	0.0014	0.0000	0.9066	31.9365
1994	0.0189	1.2865	25.9620	0.9328	0.0028	0.0623	0.0011	0.0000	0.9042	29.1706
1995	0.0241	0.9183	19.1479	0.7876	0.0028	0.0612	0.0012	0.0000	0.8926	21.8355
1996	0.0232	2.4818	22.7994	0.8666	0.0025	0.0612	0.0014	0.0000	0.8942	27.1303
1997	0.0250	3.3616	22.9376	0.8814	0.0021	0.0633	0.0014	0.0000	0.8840	28.1564
1998	0.0251	3.5650	26.6107	0.8570	0.0087	0.0643	0.0013	0.0000	0.8739	32.0060
1999	0.0186	1.6416	25.4848	0.7335	0.0058	0.0581	0.0010	0.0000	0.8659	28.8093
2000	0.0211	2.7602	25.9337	0.7441	0.0061	0.0666	0.0009	0.0000	0.8339	30.3666
2001	0.0207	2.3931	25.1002	0.7579	0.0054	0.0755	0.0010	0.0000	0.8481	29.2018
2002	0.0217	2.6755	26.7918	0.8003	0.0049	0.0764	0.0010	0.0000	0.8360	31.2076
2003	0.0227	3.2794	27.7584	0.8448	0.0050	0.0795	0.0010	0.0000	0.8263	32.8170
2004	0.0232	4.5440	28.1433	0.8650	0.0064	0.0832	0.0011	0.0000	0.8299	34.4960
2005	0.0202	3.8101	25.0758	0.6535	0.0058	0.0873	0.0010	0.0000	0.8318	30.4855
2006	0.0215	5.1210	19.1024	0.6153	0.0057	0.0940	0.0010	0.0000	0.7975	25.7586
2007	0.0214	4.7830	26.0306	0.5666	0.0062	0.1027	0.0010	0.0000	0.8199	32.3314
2008	0.0222	5.2887	24.7290	0.5973	0.0070	0.1081	0.0009	0.0000	0.8539	31.6071
2009	0.0205	3.3072	23.1306	0.4447	0.0057	0.1093	0.0008	0.0000	0.8253	27.8442
2010	0.0187	4.0811	22.8767	0.5576	0.0066	0.1012	0.0009	0.0000	0.8261	28.4689
2011	0.0210	4.1373	23.9953	0.5629	0.0083	0.1080	0.0008	0.0000	0.8452	29.6787
2012	0.0196	2.1659	22.4233	0.5136	0.0078	0.0954	0.0007	0.0000	0.6874	25.9136
2013	0.0209	2.1429	18.9909	0.5205	0.0076	0.1028	0.0007	0.0000	0.6941	22.4804
2014	0.0164	2.5749	18.2792	0.2682	0.0070	0.1099	0.0007	0.0000	0.7379	21.9943
2015	0.0200	3.6315	17.8689	0.3106	0.0096	0.1388	0.0008	0.0000	0.7065	22.6867
2016	0.0198	4.3553	20.8046	0.4070	0.0102	0.3142	0.0008	0.0000	0.7072	26.6192
2017	0.0201	4.3818	19.5357	0.4964	0.0113	0.2477	0.0008	0.0000	0.6968	25.3906
2018	0.0188	5.1891	19.2972	0.4130	0.0104	0.3558	0.0009	0.0000	0.6475	25.9327
2019	0.0189	5.2194	19.8261	0.3530	0.0099	0.3827	0.0010	0.0000	0.6751	26.4859
2020	0.0199	3.7980	28.2612	0.3627	0.0104	0.4018	0.0008	0.0000	0.6968	33.5515
2021	0.0184	3.7276	25.7268	0.2940	0.0109	0.4378	0.0010	0.0000	0.7140	30.9304
2022	0.0186	3.7718	25.2042	0.1816	0.0113	0.4738	0.0009	0.0000	0.6768	30.3390

Table 146. Emission trends for HCB (kt) 1990-2022

нсв	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	2.5606	0.0431	0.2595	NA	NA	NA	0.0056	0.0001	NA	2.8689
1991	2.2258	0.0529	0.2221	NA	NA	NA	0.0038	0.0001	NA	2.5047
1992	2.0485	0.0986	0.1747	NA	NA	NA	0.0036	0.0001	NA	2.3255
1993	1.9642	0.0761	0.1748	NA	NA	NA	0.0007	0.0002	NA	2.2160
1994	1.8081	0.0672	0.1690	NA	NA	NA	0.0008	0.0002	NA	2.0453
1995	2.3059	0.0354	0.1616	NA	NA	NA	0.0011	0.0002	NA	2.5042
1996	2.2136	0.0661	0.1659	NA	NA	NA	0.0027	0.0002	NA	2.4485
1997	2.3808	0.0687	0.1660	NA	NA	NA	0.0032	0.0002	NA	2.6189
1998	2.4010	0.0921	0.1703	NA	NA	NA	0.0035	0.0003	NA	2.6672
1999	1.7783	0.0822	0.1690	NA	NA	NA	0.0022	0.0004	NA	2.0320
2000	2.0224	0.0993	0.1824	NA	NA	NA	0.0027	0.0004	NA	2.3071
2001	1.9748	0.0978	0.1816	NA	NA	NA	0.0027	0.0003	NA	2.2572
2002	2.0811	0.1087	0.1832	NA	NA	NA	0.0027	0.0003	NA	2.3760
2003	2.1782	0.1140	0.1841	NA	NA	NA	0.0025	0.0004	NA	2.4792
2004	2.2302	0.1602	0.1845	NA	NA	NA	0.0024	0.0004	NA	2.5776
2005	1.9306	0.1168	0.1817	NA	NA	NA	0.0024	0.0003	NA	2.2318
2006	2.0551	0.1415	0.1748	NA	NA	NA	0.0025	0.0004	NA	2.3742
2007	2.0434	0.1282	0.1828	NA	NA	NA	0.0024	0.0004	NA	2.3572
2008	2.1247	0.1612	0.1531	NA	NA	NA	0.0025	0.0004	NA	2.4419
2009	1.9484	0.0975	0.2182	NA	NA	NA	0.0024	0.0004	NA	2.2669
2010	1.7735	0.1319	0.2125	NA	NA	NA	0.0020	0.0004	NA	2.1202
2011	2.0036	0.1823	0.1979	NA	NA	NA	0.0015	0.0004	NA	2.3858
2012	1.8652	0.0956	0.2076	NA	NA	NA	0.0011	0.0004	NA	2.1700
2013	1.9822	0.1074	0.1759	NA	NA	NA	0.0011	0.0005	NA	2.2670
2014	1.5471	0.1029	0.1846	NA	NA	NA	0.0011	0.0005	NA	1.8362
2015	1.8944	0.1279	0.1836	NA	NA	NA	0.0013	0.0004	NA	2.2076
2016	1.8762	0.1442	0.1912	NA	NA	NA	0.0013	0.0005	NA	2.2133
2017	1.8992	0.1601	0.1757	NA	NA	NA	0.0010	0.0005	NA	2.2365
2018	1.7775	0.1875	0.1826	NA	NA	NA	0.0008	0.0005	NA	2.1489
2019	1.7874	0.1587	0.1891	NA	NA	NA	0.0008	0.0005	NA	2.1366
2020	1.8843	0.1373	0.2921	NA	NA	NA	0.0007	0.0006	NA	2.3150
2021	1.7224	0.1329	0.3038	NA	NA	NA	0.0029	0.0007	NA	2.1627
2022	1.7120	0.1567	0.3035	NA	NA	NA	0.0027	0.0005	NA	2.1754

Table 147. Emission trends for PCB (kt) 1990-2022

РСВ	A Public Power	B Industry	C Other Stationary Combustion	D Fugitive	E Solvents	F Road Transport	G Shipping + H Aviation + I Offroad	J Waste	K Agri Livestock + L Agri Other	Total
1990	0.0013	840.1327	4.0584	NA	NA	NA	0.0228	0.0003	NA	844.2155
1991	0.0011	924.5225	2.7357	NA	NA	NA	0.0154	0.0004	NA	927.2750
1992	0.0010	975.1400	4.6852	NA	NA	NA	0.0148	0.0004	NA	979.8414
1993	0.0010	808.6036	4.7241	NA	NA	NA	0.0029	0.0005	NA	813.3320
1994	0.0009	822.2481	4.1060	NA	NA	NA	0.0034	0.0004	NA	826.3589
1995	0.0011	834.9253	2.0897	NA	NA	NA	0.0046	0.0005	NA	837.0211
1996	0.0011	908.5007	3.2700	NA	NA	NA	0.0108	0.0005	NA	911.7830
1997	0.0012	916.8829	3.2901	NA	NA	NA	0.0131	0.0005	NA	920.1878
1998	0.0012	880.5958	4.4579	NA	NA	NA	0.0143	0.0009	NA	885.0701
1999	0.0009	799.6606	4.1158	NA	NA	NA	0.0091	0.0010	NA	803.7874
2000	0.0010	812.2219	3.9394	NA	NA	NA	0.0108	0.0010	NA	816.1741
2001	0.0010	811.6457	3.7366	NA	NA	NA	0.0108	0.0009	NA	815.3949
2002	0.0010	782.6407	4.1670	NA	NA	NA	0.0108	0.0009	NA	786.8204
2003	0.0011	779.5463	4.4204	NA	NA	NA	0.0103	0.0010	NA	783.9791
2004	0.0011	771.1329	4.5255	NA	NA	NA	0.0097	0.0010	NA	775.6702
2005	0.0010	770.6087	3.7513	NA	NA	NA	0.0097	0.0010	NA	774.3717
2006	0.0010	776.9118	1.9428	NA	NA	NA	0.0103	0.0010	NA	778.8669
2007	0.0010	777.0091	4.2240	NA	NA	NA	0.0097	0.0011	NA	781.2450
2008	0.0011	785.4169	3.6307	NA	NA	NA	0.0103	0.0011	NA	789.0601
2009	0.0012	778.7877	2.7091	NA	NA	NA	0.0097	0.0011	NA	781.5088
2010	0.0012	802.3432	3.1225	NA	NA	NA	0.0080	0.0012	NA	805.4761
2011	0.0013	811.1470	4.0334	NA	NA	NA	0.0063	0.0011	NA	815.1891
2012	0.0012	780.0282	2.5891	NA	NA	NA	0.0043	0.0012	NA	782.6240
2013	0.0015	751.7683	2.1095	NA	NA	NA	0.0046	0.0013	NA	753.8851
2014	0.0013	724.2448	1.5506	NA	NA	NA	0.0046	0.0012	NA	725.8026
2015	0.0016	723.6246	1.5747	NA	NA	NA	0.0051	0.0011	NA	725.2072
2016	0.0016	721.4462	2.1916	NA	NA	NA	0.0051	0.0013	NA	723.6458
2017	0.0016	715.5980	1.9426	NA	NA	NA	0.0040	0.0014	NA	717.5475
2018	0.0016	716.4998	1.7037	NA	NA	NA	0.0034	0.0014	NA	718.2099
2019	0.0015	721.3687	1.7532	NA	NA	NA	0.0034	0.0014	NA	723.1283
2020	0.0016	731.2262	2.1648	NA	NA	NA	0.0029	0.0016	NA	733.3971
2021	0.0020	762.6868	1.2176	NA	NA	NA	0.0120	0.0018	NA	763.9202
2022	0.0028	699.7055	1.1511	NA	NA	NA	0.0108	0.0015	NA	700.8718