

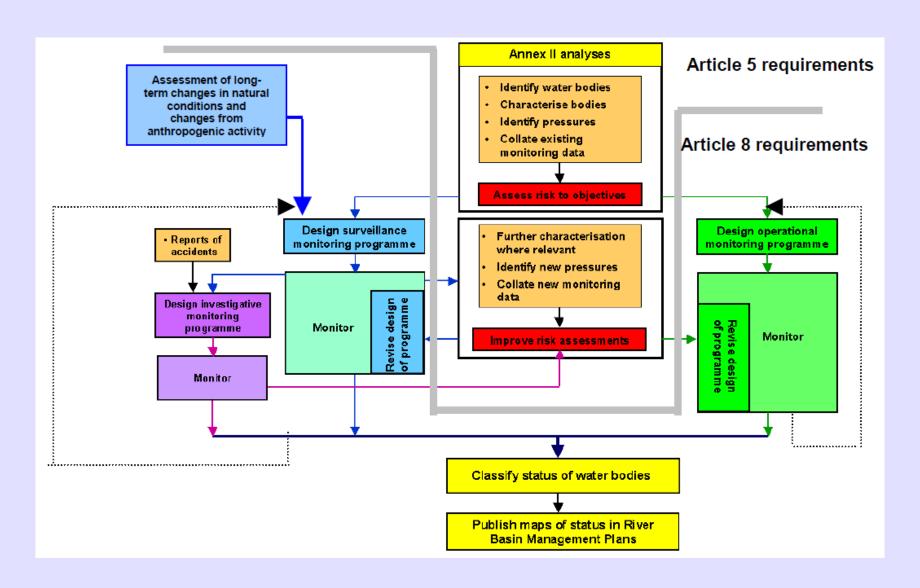
Republic of Serbia Ministry of Environmental Protection ENVIRONMENTAL PROTECTION AGENCY

Monitoring in Serbia: state-of-art and plans for improvement - lessons learned

Monitoring of surface water status in the Republic of Serbia

Snežana Čađo, Ljubiša Denić, Aleksandra Đurković, Boris Novaković, Tatjana Dopuđa Glišić, Nebojša Veljković, Zoran Stojanović, Milica Domanović snezana.cadjo@sepa.gov.rs

- The Water Framework Directive (WFD) of the European Parliament and the Council (2000/60 / EC) establishes a framework for community action in the field of water policy
- The WFD is a basic legislation in the water domain and its implementation represents a major challenge even for the EU Member States due to the scope of tasks but also due to strict deadlines
- Although the Republic of Serbia is still not a formal EU member, the RS had committed itself to follow the conceptual approaches of the WFD within the Danube Basin through active membership in the International Commission for the Protection of the Danube River (ICPDR)


- One key purpose of the Directive is to prevent further deterioration of, and protect and enhance the status of aquatic ecosystems
- "The status of surface water" is a general term of the status of a surface water body assessed by the worst one than the ecological and chemical status

The good status of a surface water body is achieved when both its statuses, ecological and chemical, are assessed at least as "good"

• The success of the Directive in achieving this purpose and its related objectives will be mainly measured by the status of "water bodies". "Water bodies" are therefore the units that will be used for reporting and assessing compliance with the Directive's principal environmental objectives

 Monitoring is a cross-cutting activity within the Directive and as such there are important interrelationships with other Articles and Annexes of the Directive. A key Article in relation to monitoring and the design of appropriate programmes for surface waters is Article 5

The relationship between Article 5 and Article 8 in the design of surface water monitoring programmes

The objective of monitoring is to establish a coherent and comprehensive overview of water status within each River Basin District and must permit the classification of all surface water bodies into one of five classes

This does not mean that monitoring stations will be needed in each and every water body. Member States will have to ensure that enough individual water bodies of each water body type are monitored

Three types of monitoring for surface waters are described in Annex V:

- surveillance,
- operational and
- investigative monitoring

Surveillance monitoring of surface waters

The objectives of surveillance monitoring of surface waters are to provide information for:

- supplementing and validating the impact assessment procedure detailed in Annex II
- the efficient and effective design of future monitoring programmes
- the assessment of long term changes in natural conditions, and
- the assessment of long term changes resulting from widespread anthropogenic activity

Surveillance monitoring has to be undertaken for at least a period of one year during the period of a RBMP

Operational monitoring of surface waters

- The objectives of operational monitoring are to:
- ➤establish the status of those bodies identified as being at risk of failing to meet their environmental objectives; and
- resulting from the programmes of measures

Investigative monitoring

Investigative monitoring may also be required in specified cases. These are given as:

- where the reason for any exceedences (of Environmental Objectives) is unknown;
- where surveillance monitoring indicates that the objectives set under Article 4 for a body of water are not likely to be achieved and operational monitoring has not already been established, in order to ascertain the causes of a water body or water bodies failing to achieve the environmental objectives; or
- to ascertain the magnitude and impacts of accidental pollution.

- Adoption of Water Law in 2010 (Official Gazette of the Republic of Serbia 30/2010) and following bylaws acquired adequate conditions on harmonization of monitoring of surface water status in the Republic of Serbia with the Water Framework Directive (2000/60/EC) requirements
- National Water Bylaws adopted in the 2010-2014 period:
 - ➤ Regulation on establishment of surface and groundwater bodies (Official Gazette of the RS 96/2010)
 - ➤ Regulation on reference conditions of surface water types (Official Gazette of the RS 67/2011)
 - Regulation on the parameters of ecological and chemical status of surface waters and parameters of chemical status and quantitative status of groundwaters (Official Gazette of the RS 74/2011)
 - ➤ Regulation on emission limit values of polluting substances in surface and groundwaters and deadlines for their achievement (Official Gazette of the RS 50/2012)
 - ➤ Regulation on emission limit values of priority and priority hazardous substances which pollute surface waters and deadlines for their achievement (Official Gazette of the RS 24/2014)

The first Programme of surface water monitoring status in Serbia harmonized with the WFD requirements was carried out in 2012

- A total of 498 surface water bodies were determined in the territory of the Republic of Serbia, of these 493 surface water bodies were grouped into the following categories: rivers, heavily modified water bodies (HMWB), artificial water bodies (AWB) and 5 lakes
- The selection of operational and surveillance monitoring stations was done based on the WFD requirements (Annex V, 1.3.1; 1.3.2)
- 50 surveillance monitoring stations were selected which represent the "basis" of water monitoring network as well as should provide the whole water status survey within the catchment areas (the Morava, the Sava and the Danube River Catchment Area)

The criteria for selection of surveillance monitoring stations

- The rate of water flow is significant within the river basin district as a whole; including points on large rivers where the catchment is greater than 2 500 km²;
- The volume of water present is significant within the river basin district, including large lakes and reservoirs;
- Significant bodies of water cross a Member State boundary;
- Sites are identified under the Information Exchange Decision 77/795/EEC;
- At such other sites as are required to estimate the pollutant load which is transferred across Member States boundaries, and which is transferred into the marine environment.

The criteria for selection of operational monitoring stations

- Operational Monitoring Programme covered all water bodies for which was assesed as at risk and could not satisfied Environmental Quality Standards (EQS) from the WFD Article 4 and water bodies where priority substances from the Priority List discharged, based on the results of National Monitoring programmes in 2009 and 2010 as well as the impact analysis conducted in accordance with the WFD Annex II
- In 2012, 90 water bodies were included in the Operational Monitoring Programme (42 water bodies are also surveillance monitoring stations)

Selection of quality elements (Annex V.1.1.)

- For surveillance monitoring, parameters indicative of all the biological, hydromorphological and all general and specific physico-chemical quality elements are required to be monitored.
- For operational monitoring, the parameters used should be those indicative of the biological and hydromorphological quality elements most sensitive to the pressures to which the body is subject, all priority substances discharged and other substances discharged in significant quantities.

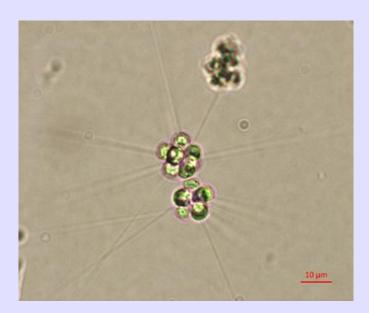
In the 2012-2014 period the monitoring of surface waters covered a total of 149 water bodies in Serbia

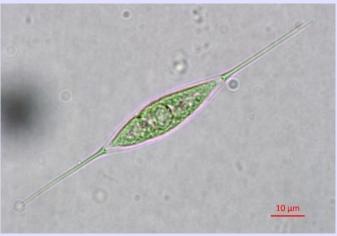
• The results are given in the following publication: https://www.sepa.gov.rs/download/VodeSrbije/StatusPovrsinskihVodaSrbije

- An implementation of the Water Framework Directive has changed the criteria and methodology of assessing the status of water bodies. Thus the assessments of surface water quality from previous years, before 2012, are not comparable with the newly obtained assessments
- We would like to outline that these are the first status assessments given for one calendar year (or two, in the case of 2012/2013) and that these assessments may differ from future status assessments, when we'll have a larger set of data

Water Monitoring Network of Surface Waters in 2012

Quality elements used for ecological and chemical classification of rivers, lakes and reservoirs according to the WFD and national legislation of the Republic of Serbia

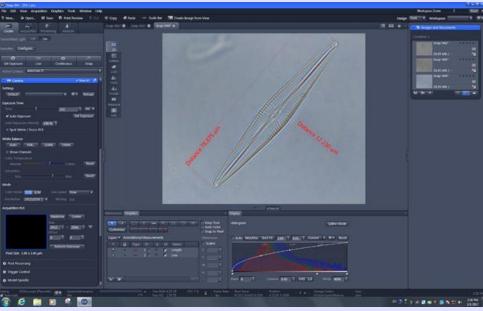

	Biological quality elements	Rivers	Lakes and reservoirs
	 Phytoplankton 	+	+
	 Phytobenthos 	+	+
ns	 Macrophytes 	_	_
[AT	 Macroinvertebrates 	+	+
r SJ	• Fish	_	-
ECOLOGICAL STATUS	General physico-chemical elements	+	+
	Specific nonpriority polluting substances	+	+
EC	Hydromorphological quality elements		
	Hydrological regime	±	±
	 River flow continuity 	_	_
	 Morphological conditions 	_	-
CHEMICAL STATUS	Priority and priority hazardous substances	+	+


Annual frequency of water quality elements investigation

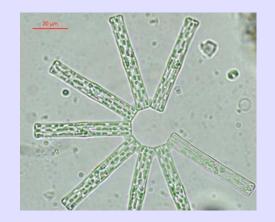
Biological quality elements	rivers & AWB	lakes	reservoirs
macroinvertebrates	2	2	2
phytobenthos	2	2	2
phytoplankton	6 *	4	4 (3)
macrophytes	-	-	-
fish	-	-	-
General physico-chemical elements	12 (10-12)	4	4 (3)
Specific nonpriority polluting substances	12 (10-12)	4	4 (3)
Hydromorphological quality elements			
hydrological regime	water level and	flow	
river flow continuity	-	-	-
morphological conditions	-	-	-

^{*}only at large plain rivers (Type 1)

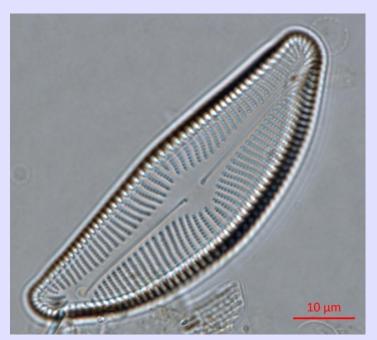
Phytoplankton

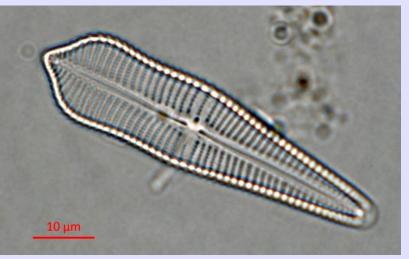

- The following metrics are used for indicative assessment of ecological status/potential:
 - phytoplankton abundance (cells ml⁻¹)
 - percentage participation of Cyanobacteria and Euglenophyta in the total phytoplankton community
 - biomass (chlorophyll-a concentration)

Identification of pressures: >eutrophication and organic pollution


meritory - mean value

Inverted microscope with dark and light field and phase contrast with camera and image analysis for phytoplankton analysis, Carl Zeiss GmbH, Axio Observer D1

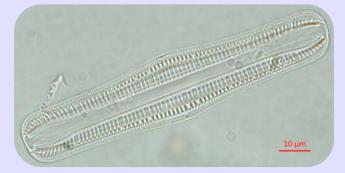


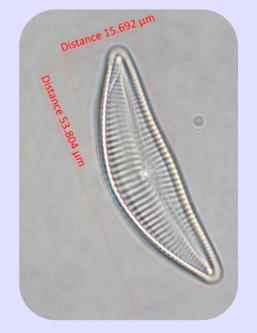


Phytobenthos

- The following diatom indices are used for indicative assessment of ecological status/potential:
 - > **IPS** (Coste in Cemagref, 1982) "Indice de pollutio-sensibilite"
 - > **CEE** (Descy & Coste,1990)
 - EPI-D (Dell'Uomo, 1999)"Diatom-basedEutrophication/Pollution Index"

Identification of pressures:


- **>eutrophication**
- >organic pollution

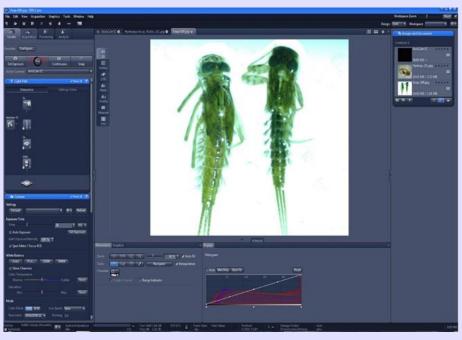

meritory (obtained or mean value)

Diatom indices calculation (OMNIDIA v. 5.5)

Analysis 35	Species FRAC FULN	Abundance -
SLIDE N° 171983437 Date 07/09/2016 Population 420 Diversity 4.27	5 5 5 5 5 5 5	1
Date 07/09/2016 Diversity 4 27	EOTO	1 2
Diversity 4.27	GOLI	1
Basin DUNAV	GPAR	1
Evenous 0.79	GTRU	1
River BAJSKI KANAL No genera 20	GYAT	1 3
Site BACKI BREG	HNOR	4
Hydrologic code 92111 Detailed liste	MVAR	1
Distance/source	NCPR	5
Temperature 23.0 GPS-N 7337557 5081403	NCTE	19
I ambert II-X	NCTO	17
	NIGR	2
Particularities	NINT	1
Other labels	NRAD	14
Other labels	NVIR NZLT	1 2
Quality DAP 14.6 SHE 15.4 PS 15.3 DSE/S 3.83 TDV20 13.5 DP I 13.7	PTLA	1
notes/20 EPLD 15.0 DI-CH 15.9 ST 13.2 IDG 15.5 %PT 1.7 ROTT troph 10.1	RGIB	44
	SHAN	2
INDICES 16.1 WAT 9.8 D 18.8 CEE 16.2 LOBO 11.4 ROTT sap. 17.5	400000000	

Diatom indices used in ecological status/potential assessment according to the National Monitoring Programme

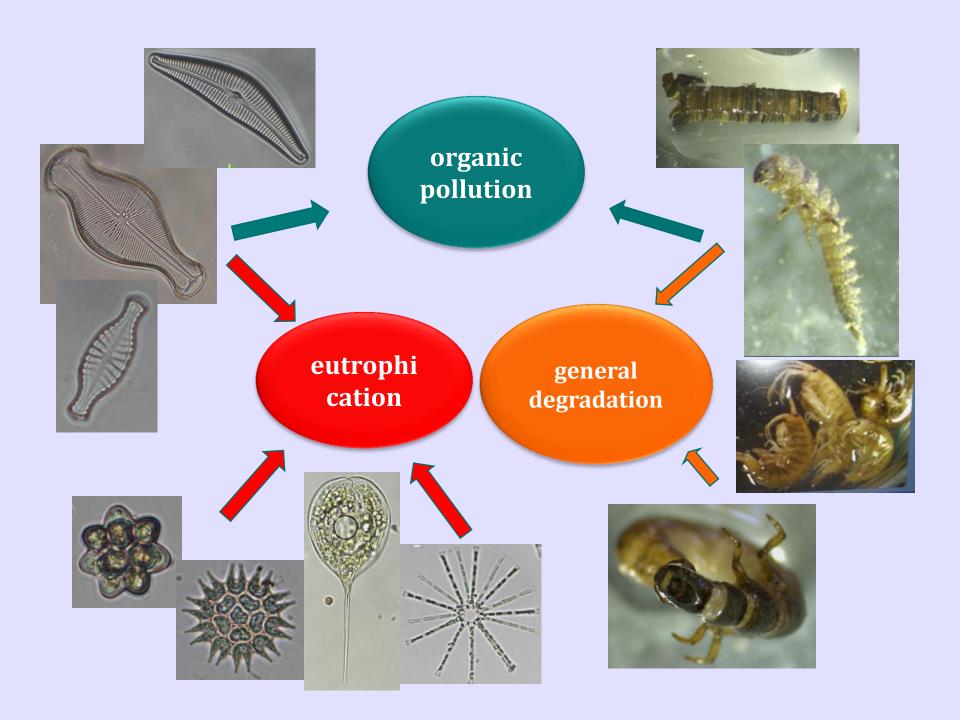
Macroinvertebrates


- The following metrics are used for indicative assessment of ecological status/potential (depending on the type of water body):
 - Zelinka & Marvan Saprobic Index
 - > BMWP Score
 - > ASPT Score
 - > Shannon-Weaver Diversity Index
 - > EPT Taxa
 - > number of families
 - > total number of taxa
 - percentage participation of Oligochaeta/Tubificidae
 - > number of bivalve species
 - > number of gastropod species
 - number of sensitive taxa (Austrian list)

Identification of pressures:

- >general degradation
- **≻organic pollution**

Stereomicroscope with gooseneck type cold light with camera and image analysis for analysis of benthic invertebrates, Carl Zeiss GmbH, SteREO Discovery V8



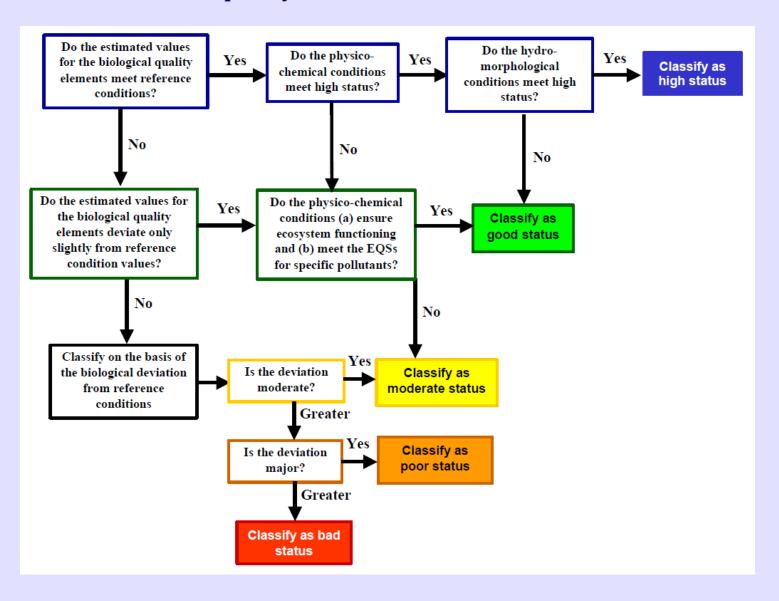
ZEN 2 Microscope and Imaging Software

ASTERICS v. 4.0.4 Software for benthic invertebrate metrics

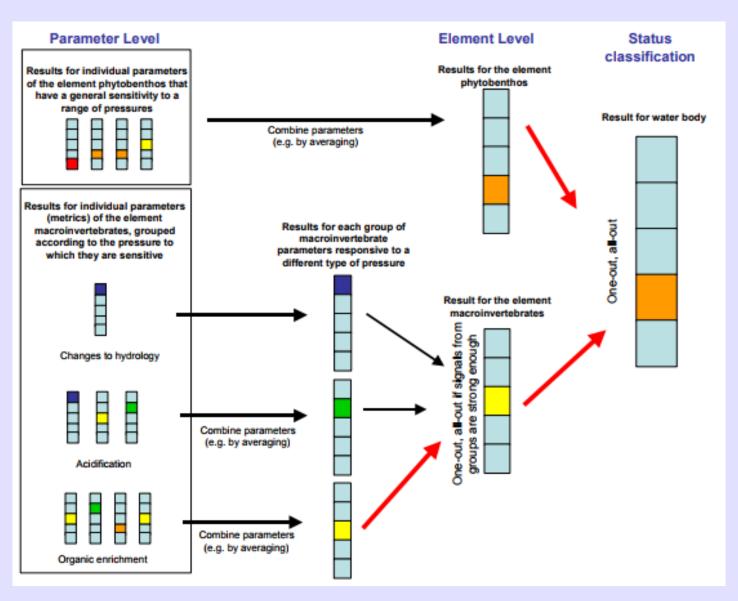
General physico-chemical parameters used in ecological status assessment

Parameter	Unit
Water temperature	oC
Transparency	m
Turbidity	NTU
Suspended Solids	mg/l
Dissolved Oxygen	mgO_2/l
Oxygen Saturation	%
Alkalinity	mmol/l
Total Hardness (CaCO ₃)	mg/l
Free Carbon Dioxide CO ₂	mg/l
Carbonates - CO3	mg/l
Bicarbonates - HCO3 ⁻	mg/l
Total Alkalinity (CaCO ₃)	mg/l
рН	-
Conductivity	μS/cm
Total Dissolved Solids (TDS)	mg/l
Ammonium (NH ₄ -N)	mg/l

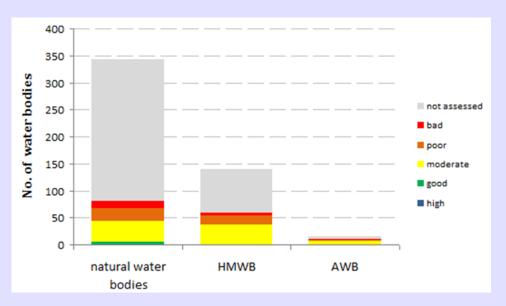
Parameter	Unit
Nitrites (NO ₂ -N)	mg/l
Nitrates (NO ₃ -N)	mg/l
Organic Nitrogen (N)	mg/l
Total Nitrogen (N)	mg/l
Ortophosphates (PO ₄ -P)	mg/l
Total Phosphorus (P)	mg/l
Dissolved Silicates (SiO ₂)	mg/l
Calcium (Ca ⁺⁺)	mg/l
Magnesium (Mg+)	mg/l
Chloride (Cl ⁻)	mg/l
Sulphate (SO ₄)	mg/l
BOD5	mg/l
COD_{Mn}	mg/l
COD_{Cr}	mg/l
Total Organic Carbon (TOC)	mg/l

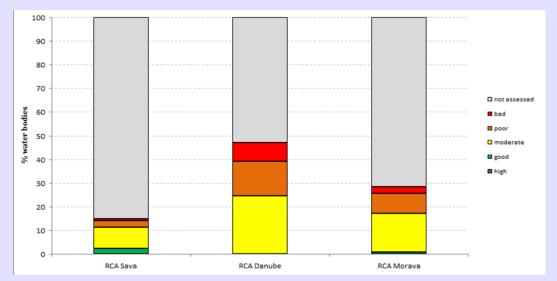

Specific nonpriority polluting substances

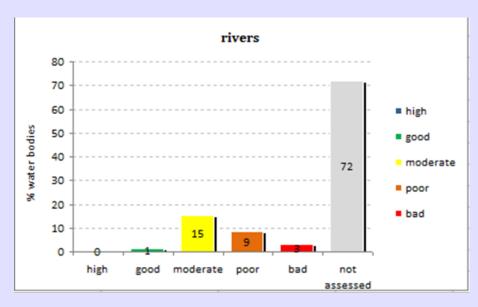
No.	Specific polluting substance	Analytical method
1	Zinc (Zn)	EPA 6020A:2007
2	Copper (Cu)	EPA 6020A:2007
3	Aluminium (Al)	EPA 6020A:2007
4	Iron (Fe)	EPA 6020A:2007
5	Manganese (Mn)	EPA 6020A:2007
6	Total Chromium (Cr)	EPA 8270D:2007
7	Arsenic (As)	EPA 6020A:2007
8	Boron (B)	EPA 6020A:2007
9	Non-ionogenic surface-active agents	EPA 425.1
10	Petroleum Hydrocarbons	MSz 12750/23-76
11	Phenol Index	EPA 8270D:2007
12	Gross beta-radioactivity	SRPS ISO 9697:2008
13	Polychlorinated biphenyls (PCB):28,52,101,118,138,153,180 и 194	EPA 8270D:2007
14	Propazine	SRPS ISO EN 11369:2008
15	Linuron	SRPS ISO EN 11369:2008
16	Terbuthylazine	SRPS ISO EN 11369:2008

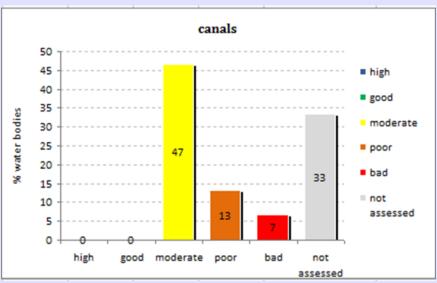

Statistical analysis results

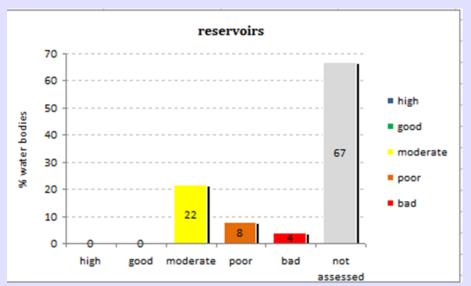
- general physico-chemical parameters and specific nonpriority substances in ecological status/potential assessment
 - ➤ rivers parameter value is calculated as 80th percentile, except for the parameter Dissolved Oxygen (10th percentile)
 - ► lakes and reservoirs parameter value is calculated as mean value in a water column, except for the parameter Dissolved Oxygen (10th percentile)

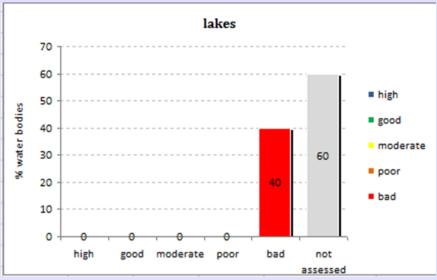

The relationships between the biological, hydromorphological and physicochemical quality elements in status classification

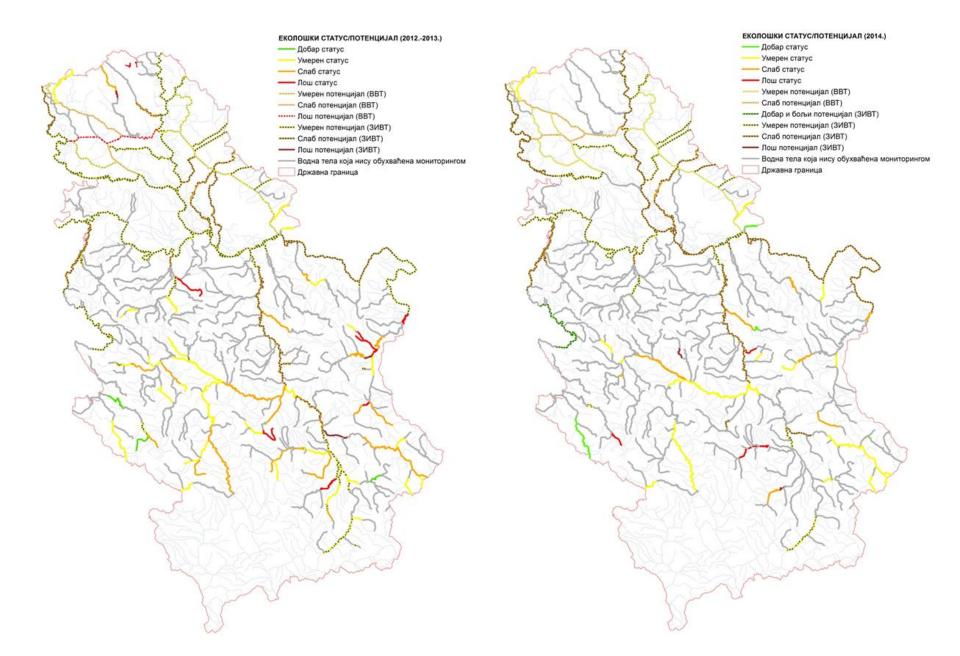

Combining parameters to indicate the status of a biological quality element and applying the "one out all out" principle to overall ecological classification

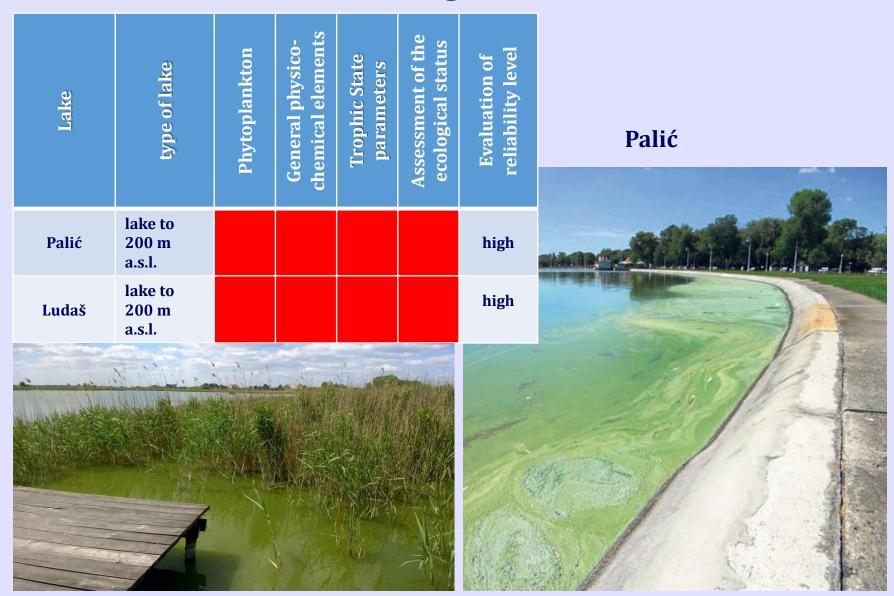

Percentage participation of natural water bodies, HMWB and AWB with respect to ecological status classes in the 2012-2014 period




Percentage participation of water bodies within each River Catchment Area (RCA) with respect to ecological status classes in the 2012-2014 period




❖the worst status had RCA
Danube-no water bodies
with satisfied status
❖RCA Sava-only 3% water
bodies with satisfied
status
❖RCA Morava - only 2%
water bodies with satisfied
status


Assessment of the ecological potential of reservoirs in the 2012-2014 period

						which			gical qua lements	lity	nical	eters	Se Se		S
Reservoir	River	Water body code	The type of river on w was formed	Locality	Phytoplankton	Phytobenthos	Macroinvertebrates	General physico-chemical elements	Trophic Status Parameters	Specific nonpriority polluting substances	Assessment of the ecological potential	Evaluation of levels reliability			
	Grliška	GRL_2	Туре 3	A			-					medium			
Grlište	river	GRL_2	Type 3	В			-					medium			
11101	GRL_2	Type 3	С								medium				
		DJ_4	Type 4	A			-					medium			
Vrutci	Đetinja	DJ_4	Type 4	В			-					medium			
		DJ_4	Type 4	С								medium			
		UV_6	Type 4	A		-	-					medium			
Sjenica	Uvac	UV_6	Type 4	В		-	-					medium			
,		UV_6	Type 4	С		-	-					medium			
		UV_6	Type 4	D								medium			
		VET_3	Type 3	A			_					medium			
Barje	Veternica	VET_3	Type 3	В		-	-					medium			
		VET_3	Type 3	С		-						medium			
	n	BANJJM_2	Type 4	A		-	-					medium			
Prvonek	Banjska river	BANJJM_2	Type 4	В		-	-					medium			
	11701	BANJJM_2	Type 4	С			-					medium			
Zobnatica	Krivaja	KRIVJ_2	Type 5	В								medium			

Assessment of the ecological potential of reservoirs in the 2012-2014 period

						which			gical qua lements	lity	nical	eters	X.	ogical	s
Reservoir	River	Water body code	The type of river on w was formed	Locality	Phytoplankton	Phytobenthos	Macroinvertebrates	General physico-chemical elements	Trophic Status Parameters	Specific nonpriority polluting substances	Assessment of the ecological potential	Evaluation of levels reliability			
Bela Crkva	-	-	AWB	В		-	-					medium			
		UV_4	Type 4	A								medium			
Radoinja	Uvac	UV_4	Type 4	В		-	-					medium			
		UV_4	Type 4	С								medium			
	Moravica	SOKMOR_2	Type 3	A			-					medium			
Bovan		SOKMOR_2	Type 3	В		-						medium			
Bovan		SOKMOR_2	Type 3	С		-	-					medium			
		SOKMOR_2	Type 3	D		-	-					medium			
		RAS_2	Type 3	A		-	-					medium			
Ćelije	Rasina	RAS_2	Type 3	В			-					medium			
cenje		RAS_2	Type 3	С		-						medium			
		RAS_2	Type 3	D		-	-					medium			
		GRU_2	Type 3	A								medium			
Gruža	Gruža	GRU_2	Type 3	В		-	-					medium			
GIULA	Gruza	GRU_2	Type 3	С		-						medium			
		GRU_2	Type 3	D		-	-					medium			

Assessment of the ecological status of lakes in Serbia

Ludaš

Guidelines on further harmonization of surface water monitoring to the WFD conducted by the SEPA

- Future surveillence monitoring programmes should include:
- > the stations situated at large lakes and reservoirs
- > other biological quality elements macrophytes and fish
- > all hydromorphological quality elements
- Future operational monitoring programmes should include:
- water bodies which have not yet been investigated (also grouping of water bodies with regard to type/various pressure and sensitivity to identified pressures should be carried out as well as conducting operational monitoring programme in representative water bodies in order to obtain results for the whole river catchment area)
- ➤ fish and macrophyte community investigation at the water bodies in which these quality elements are the most sensitive to pressures

Guidelines on further harmonization of surface water monitoring to the WFD

- Amendment the Regulation on the parameters of ecological and chemical status of surface waters and parameters of chemical status and quantitative status of groundwaters:
 - >revision the list of parameters and ecological status class boundaries
 - ➢in order to ensure comparability of monitoring systems, the results of the systems operated shall be expressed as Ecological Quality Ratios (EQR) for the purposes of classification of ecological status

Guidelines on further harmonization of surface water monitoring to the WFD

- ➤ to define a clear and unambiguous methodology with main goal to determine appropriate values in ecological and chemical status assessment
- revising the criteria considering the level of reliability/confidence and precision in ecological status classification
- to define a list of the specific polluting substances and Environmental Quality Standards (EQS) with regard to these substances
- amendment the Regulation on reference conditions of surface water types

Current activities related to the implementation of the WFD

- The Serbian Environmental Protection Agency prepares a Report on the Status of Surface Waters in Serbia for 2015 and 2016 which will be published by the end of this year
- This report will also show the results of operational monitoring for the new 20 sampling stations on water bodies for which until now we had no monitoring data and for 6 reservoirs as well
- The Operational Monitoring Programme of surface waters for 2017 covered new 15 sampling stations on water bodies for which we had no monitoring data so fa

Current activities related to the implementation of the WFD

• The implementation of the project "Operational monitoring of surface and groundwaters of the Republic of Serbia" is underway, financed by the Ministry of Environmental Protection of Serbia

Part 1 - "Operational monitoring of surface waters"

- The aim of the project is to improve the protection of the watercourses of the Danube River Basin and to implement the Water Framework Directive by expanding the existing surface water monitoring and by introducing research of biological quality elements macrophytes and fish that have not been systematically investigated in the territory of the RS so far
- the project was granted to a consortium headed by the Faculty of Biology, University of Belgrade
- the investigation of the macrophyte community, in order to assess the ecological status/potential, is foreseen for 27 water bodies of rivers and canals, 16 reservoirs and two lakes
- the investigation of fish community, in order to assess the ecological status/potential, is foreseen for 47 water bodies of river and canals

